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Abstract

We report on an experiment that shows subjects prefer a gradual resolution of uncer-

tainty when information about winning yields decisive bad news but inconclusive good

news. This behavior is di�cult to reconcile with existing theories of choice under uncer-

tainty, including the Kreps-Porteus model. We show how the behavioral patterns uncov-

ered by our experiment can be understood as arising from subjects’ special emphasis on

their best (peak) and worst (trough) experiences along the realized path of uncertainty.
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1 Introduction

Consider the following situation: a decision maker places a bet that pays o↵ if the event W

occurs. At some specified time T , the state of the world is revealed and the decision maker

receives the prize if the state is in W . Prior to time T , the decision maker may learn about the

likelihood of W . For example, she may learn whether or not W has occurred in some period

prior to T ; alternatively, she may receive partial information or no information at all.

Important determinants of a person’s utility, such as the person’s health, wealth or educa-

tional attainment, take the form of a lottery that will resolve at some future date. Information

about these outcomes, even if decision irrelevant, will a↵ect the person’s utility and it seems

plausible that utility would also depend on how such information is disclosed. However, the

manner in which decision-irrelevant information is disclosed has no e↵ect on the utility of a stan-

dard expected utility maximizer; this agent would be indi↵erent between learning the outcome

immediately, not learning anything prior to period T or any other form of disclosure.

Contrary to the predictions of the standard model, experimental evidence suggests that

many decision makers value non-instrumental information; they often prefer early over late

disclosure (e.g. Ahlbrecht and Weber, 1997; Eliaz and Schotter, 2010; Falk and Zimmermann,

2016); though in some situations they have a clear preference for late resolution (e.g. Oster,

Shoulson and Dorsey, 2013; Ganguly and Taso↵, 2017). Golman, Hagmann and Loewenstein

(2017) provide an extensive survey of the experimental literature on preferences for timing of

resolution of uncertainty.

This paper uncovers a new pattern of demand for non-instrumental information. In our

experiment, subjects exhibit strict preferences with respect to gradual information disclosure.

Specifically, subjects prefer a process in which the chance of winning a monetary prize goes

up gradually or drops to zero all at once, to a process that resolves all uncertainty in a single

moment. Thus, subjects opt for gradual over immediate information disclosure if the gradual

option reveals partial good news or decisive bad news. By contrast, we find that subjects are

more inclined to choose immediate disclosure when the gradual option is of the decisive good

news or inconclusive bad news variety.

Our findings are likely to be relevant in information design problems outside the lab. For

2



example, “up or out” HR policies determine that, at specific time intervals, employees that

are on track for a large future promotion (such as making partner in a firm) must either get a

smaller promotion or be fired. Such policies resemble the partial good news and decisive bad

news disclosure policy favored by the majority of our subjects. In healthcare, patients may opt

for a more invasive procedure that provides immediate disclosure and forgo safer or less invasive

diagnostic procedures when they provide information of the gradual bad news or decisive good

news variety. Oster (2014) provides a pre-natal testing example: “If I was probably going to do

that [the more invasive procedure] anyway, why should I go through the anxiety of being told

I had a bad screening result, then worry for weeks before getting a final answer? (p. 108)”

Our findings are noteworthy against the backdrop of recent experimental results in Nielsen

(2020) and Masatlioglu et al. (2023). In our experiment, the uncertain location of the prize is

a state of the world realized ex-ante, that is, before the subjects make any choices about its

disclosure. Nielsen (2020) compares this type of setting to settings with ex-post realization of

states, such as payo↵-relevant coin flips that occur sometime during an experiment. Nielsen’s

main finding is that subjects demand earlier forms of disclosure in ex-ante settings.1 It is hence

surprising, given this previous evidence, that one of our gradual disclosure options convinces

the majority of subjects to forgo immediate disclosure.

Masatlioglu, Orhun and Raymond (2023) focus on the skewness of gradual information

disclosure and find an overall preference for positively skewed information, that is, for disclosure

modes that reveal more decisive information about good states and less decisive information

about bad states. Given this previous evidence, it should seem surprising that the gradual

information disclosure option favored by the majority of our subjects is the partial good news

and decisive bad news variety.

Part of the explanation for the contrast between the previous evidence and our main findings

is that we ask di↵erent questions. For example, while Nielsen (2020) and Masatlioglu et al.

(2023) fix the prior probability of winning to be exactly one-half across treatments, we depart

from the knife-edge symmetric prior case and allow prior variation. To provide further insight

1
Zimmermann (2015) o↵ers an example of an ex-post realization setup. Subjects win when the sum of three

dice thrown over the course of the experiment is larger than a threshold. Only 45% of subjects prefer all three

dice rolled on day 1, while 31% prefer one die rolled per day for three consecutive days, and 24% prefer all three

rolled on day 3. An important di↵erence from our setup, in addition to ex-post realization, is that both good

and bad news arrive gradually when the dice are thrown on di↵erent days.
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into our design and to interpret our results, we use theory to delve deeper into the drivers of

demand for non-instrumental information.

Our experimental design, described in detail below, is extremely simple and o↵ers an ideal

setting for calibrating and testing theoretical models of demand for information. The behavior

observed in our experiment is not only di�cult to reconcile with standard theories of choice,

but also with many of the alternatives that have been developed more recently. For example,

preferences over temporal lotteries in Kreps and Porteus (1978), preferences for one-shot resolu-

tion of uncertainty in Dillenberger (2010), and surprise and suspense utility in Ely et al. (2015)

require the direction of preference to be the same across our decision problems —either always

preferring gradual or always preferring immediate disclosure— and therefore cannot account

for our main findings.

To interpret the observed behavior, we adopt the framework developed in Gul et al. (2021)

which departs from expected utility in two ways: first, as in Kreps and Porteus (1978), subjects

may have a categorical preference for early or late resolution of uncertainty. Second, subjects

may place special emphasis on their best (peak) and worst (trough) experiences along the

path of realized uncertainty over time. The resulting utility, peak-trough utility, allows us to

rationalize and interpret the observed patterns of behavior.

The rest of the paper proceeds as follows. In Section 2, we describe the experimental design.

In Section 3, we provide a framework for understanding the choice options in our experiment as

risk consumption paths. We obtain the theoretical predictions of existing models in Section 4.

We present the results of the experiment in Section 5, and further analyze the heterogeneity of

subjects responses in Section 6. Section 7 concludes.

2 Experimental Design

A total of 125 University of Maryland undergraduate students participated in the experiment

conducted in the Experimental Economics Laboratory at the University of Maryland. We had

8 sessions in total (6 sessions with 16 subjects, 1 session with 15 subjects and 1 session with 14

subjects).

Subjects were recruited through ORSEE (Greiner, 2015). The experiment was programmed
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in zTree (Fischbacher, 2007). A typical session lasted around 30 minutes. The instructions were

incorporated into the experiment. (Complete instructions and the screenshots may be found

in the Appendix.) On average, a total of 10 minutes of a typical session was instructional.

Subjects earned an average of $12.40, including a $7 show-up fee, paid in cash privately at the

end of the experiment.

Subjects were asked to choose one of three boxes on their screen and then choose the manner

in which the content of the boxes are to be revealed. Every subject confronted four decision

problems:

G1. Gradual resolution, one box contains a prize of $10;

G2. Gradual resolution, two boxes contain a prize of $10 each;

O1. One-shot resolution, one box contains a prize of $10;

O2. One-shot resolution, two boxes contain a prize of $10 each.

One of these decision problems was chosen for implementation at the end of the experiment.

The subjects earned $10 if the box that they selected contained $10, and $0 otherwise. The

decision problems were presented in random order during the sessions.

In decision problems G1 and G2, the contents of the boxes were revealed to the subjects

one after the other, with a 60-second delay between boxes. After choosing their boxes, subjects

decided whether they wanted their box to be opened early or late. For concreteness, we will call

the box that the subject chose box 1 and the others box 2 and box 3. The option early means

that the experiment reveals the content of box 1 first, one minute later reveals the content of

box 2, and one minute after that the content of box 3. Choosing late means that the experiment

reveals the content of box 2 first. Then, after a 60-second delay, the experiment reveals the

content of box 3 and 60 seconds after that the content of box 1.

Note that subjects learn the outcome once the first two boxes are opened. The experiment

reveals the content of the third box for the sake of transparency. In decision problems O1

and O2, the contents of all boxes are revealed at the same time. After selecting their boxes,

subjects chose whether they wanted all of the boxes to be opened at the start or at the end of a

120-second waiting period. To check the strength of the preference, we employed the standard
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choice list procedure (e.g. Epstein and Halevy, 2018). Ten di↵erent amounts of compensation

ranging from 1 cent to 50 cents were o↵ered. This procedure is identical to the willingness to

switch elicitation procedure used in Masatlioglu, Orhun and Raymond (2017).

Once the answers were collected, the computer randomly picked one of the four decision

problems and one of the 10 price list questions. If the DM had stated that she is unwilling to

switch her initial choice at the randomly picked level of compensation, the boxes were opened

in the manner that she had chosen initially and the DM received no additional compensation.

Otherwise; that is, if the DM had stated that she would accept the randomly picked level of

compensation, the boxes were opened in the manner that she had not chosen initially and

the DM received the additional compensation. All subjects waited for 120 seconds until the

experiment ended.

3 A Framework for Risk Consumption

In this section, we provide a framework for understanding the options given to our experimental

subjects in terms of risk consumption; that is, the idea that agents derive utility from the

evolution of a risky prospect over time. The decision maker (DM) receives, in period N , a prize

from a finite set, A, of prizes. In each period, t = 1, . . . , N , the DM faces a lottery ↵t; that is,

a probability distribution over prizes. This lottery evolves over time as the DM receives new

information. Hence, we call the resulting path of lotteries, (↵1, . . . ,↵N), an evolving lottery.

Below, we use the terms “evolving lottery” and “path” interchangeably.

Each decision problem in our experiment presents the subject with two options. Both

options yield the same probability of winning $10. However, they lead to di↵erent random

evolving lotteries, that is, probability distributions over evolving lotteries. In each decision

problem, let P denote the random evolving lottery associated with the early option, and let Q

denote the random evolving lottery associated with the late option.

Consider decision problem G1: the initial probability of winning the $10 prize is 1/3 and,

therefore, in the first period of every path, the probability of winning the prize is ↵1 = 1/3.

Suppose the subject chooses the early option; that is, the random evolving lottery P . Then, in

period 2, the subject learns whether or not they won the prize and therefore, ↵2 is either zero

6



or one. Hence, P has two paths (1/3, 1, 1) and (1/3, 0, 0) and assigns to them the following

probabilities:

P (1/3, 1, 1) = 1/3 and P (1/3, 0, 0) = 2/3.

If the subject chooses late option; that is, chooses Q, information is revealed gradually. The

initial probability of winning is, again, ↵1 = 1/3. If box 2, the box opened in period 2, contains

the prize, then the subject will learn that she has lost once it is opened and ↵2 = ↵3 = 0; if

box 2 does not contain the prize, then the probability of winning rises to ↵2 = 1/2. Since each

box is equally likely to contain the prize, the probability that ↵2 = 1/2 is 2/3. If ↵2 = 1/2, all

uncertainty is resolved when box 3 is opened. Therefore, ↵2 = 1/2 will be followed either by

↵3 = 1 or ↵3 = 0. Thus, Q, the random evolving lottery associated with the gradual resolution

of uncertainty is as follows:

Q(1/3, 1/2, 1) = Q(1/3, 1/2, 0) = Q(1/3, 0, 0) = 1/3.

Notice that P and Q are the only two random evolving lotteries that can be generated by

varying the order in which the boxes are opened.

To facilitate their comparison, we may write options P and Q as matrices where each row

is a belief path

P =

2

6664

1/3 1 1

1/3 0 0

1/3 0 0

3

7775
and Q =

2

6664

1/3 1/2 1

1/3 1/2 0

1/3 0 0

3

7775

where we use the convention that each row is equally likely, that is, each row has 1/3 probability.

Decision problem G2 is identical to G1 except that two of three boxes contain a prize. In

this case, the early and late options in G2 are, respectively

P =

2

6664

2/3 1 1

2/3 1 1

2/3 0 0

3

7775
and Q =

2

6664

2/3 1 1

2/3 1/2 1

2/3 1/2 0

3

7775
.

Decision problem O1 o↵ers a simple timing trade-o↵. One choice reveals all information
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in period 2 while the other reveals all information in period 3. Since only one box contains a

prize, the early and late options in O1 are, respectively

P =

2

6664

1/3 1 1

1/3 0 0

1/3 0 0

3

7775
and Q =

2

6664

1/3 1/3 1

1/3 1/3 0

1/3 1/3 0

3

7775
.

Finally, decision problem O2 o↵ers the same simple timing trade-o↵ as O1 but with two

boxes containing a prize

P =

2

6664

2/3 1 1

2/3 1 1

2/3 0 0

3

7775
and Q =

2

6664

2/3 2/3 1

2/3 2/3 1

2/3 2/3 0

3

7775
.

4 Predictions from theory

Expected utility

A standard expected utility maximizer whose only concern is the ultimate outcome and who

does not care about how uncertainty resolves would identify each path ↵ = (↵1, . . . ,↵N) with

↵1 and assign to ↵ the expected utility of ↵1. Hence, a standard DM with von Neumann-

Morgenstern utility should be exactly indi↵erent in every choice problem of our experiment.

Kreps-Porteus preferences

Kreps and Porteus (1978) develop the first model that permits a preference for early or late res-

olution of uncertainty. Their choice objects are temporal lotteries rather than random evolving

lotteries. A one-stage temporal lottery is simply a probability distribution over prizes. Then,

we define a t-stage temporal lottery inductively as a lottery over (t�1)-stage temporal lotteries.

In our experimental setting, each choice can be mapped to a temporal lottery. For example,

gradual resolution in G1 corresponds to the following temporal lottery: in period 2, the agent

can encounter two possible one-stage lotteries; `1 yields the prize with probability 0; while `2

yields the prize with probability 1/2. In period 1, the agent has a 2-stage temporal lottery that
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yields one-stage lottery `1 with probability 1/3 and one-stage lottery `2 with probability 2/3.

Let L denote this temporal lottery.

Normalize the utility of $10 to 1 and the utility of $0 to zero so that u2(`1) = 0, u2(`2) = 1/2

are the two possible payo↵ realizations in period 2. Then, a period-1 aggregator u1 : [0, 1] !

[0, 1] such that u1(1) = 1, u1(0) = 0 determines the utility of a Kreps-Porteus agent as follows:

U(L) =
1

3
u1(u2(`1)) +

2

3
u1 (u2(`2)) =

1

3
u1(0) +

2

3
u1

✓
1

2

◆
=

2

3
u1

✓
1

2

◆

Proposition 1. A Kreps-Porteus utility agent with first period aggregator u1 prefers:

(i) The early option P to the late option Q in problem G1 if and only if 1

3
> 2

3
u1

�
1

2

�
;

(ii) The early option P to the late option Q in problem G2 if and only if 2

3
> 2

3
u1

�
1

2

�
+ 1

3
;

(iii) The early option P to the late option Q in problem O1 if and only if 1

3
> u1

�
1

3

�
;

(iv) The early option P to the late option Q in problem O2 if and only if 2

3
> u1

�
2

3

�
.

The proof of Proposition 1 is a direct application of the formula and left to the reader. The

curvature of u1 governs the behavior of Kreps-Porteus agents. If u1 is convex, then the agent

always prefers early resolution while if u1 is concave the agent always prefers late resolution.

More nuanced behavior is possible if u1 is neither convex nor concave. For example, if u
�
1

3

�
> 1

3

and 2

3
> u

�
2

3

�
, then the agent prefers early resolution in O1 but late in O2. Note that Kreps-

Porteus subjects prefer the early choice over the late choice in G1 and G2 if and only if 1

2
� u

�
1

2

�
.

Thus, the main testable prediction of the Kreps-Porteus model in our experiment is that the

decision maker should behave identically across problems G1 and G2: either P is strictly

preferred in both problems, or Q is strictly preferred in both problems, or else the decision

maker must be indi↵erent in both problems.

Preference for one-shot resolution

Palacios-Huerta (1999) shows that a two-stage nonexpected utility model can lead to a pref-

erence for one-shot resolution of uncertainty. Building on this insight, Dillenberger (2010)

develops a general theory of preference for one-shot resolution of uncertainty, which provides
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two testable implications in our experiment. The first one is time neutrality, which says that,

as long as all uncertainty resolves in a single moment, the decision maker does not care when

it resolves. Therefore, the decision maker must be indi↵erent in problems O1 and O2. The

second is preference for one-shot resolution, which requires that the decision maker find the

early option at least as good as the late option in both G1 and G2.

Surprise and Suspense

Ely, Frankel and Kamenica (2015) propose two measures of the entertainment value of gradual

information revelation: suspense and surprise. Suspense is the expected belief variation next

period while surprise is the realized belief variation from period to period. Specifically, the

surprise utility of a belief path ↵ = (↵1,↵2,↵3) in our experiment is given by

wsurprise(↵) =
3X

t=2

u
�
k(↵t, 1� ↵t)� (↵t�1, 1� ↵t�1)k2

�

where u is increasing and strictly concave with u(0) = 0. The suspense utility of a belief path

↵ depends on the random evolving lottery P that assigns probabilities to each path in the

decision problem faced by the agent,

wsuspense(↵, P ) =
2X

t=1

u
�
EP k(↵t+1, 1� ↵t+1)� (↵t, 1� ↵t)k2

�

where again u is increasing and strictly concave with u(0) = 0. The surprise/suspense utility

of a random evolving lottery P is the expected value of the surprise/suspense utility of a path,

with probabilities given by P .

In terms of surprise and suspense, decision problems G1 and G2 are mirror images of one

another: we can derive the random evolving lottery associated with each option in G2 from

the corresponding choice in G1 by replacing every probability ↵t in the former with 1�↵t. An

immediate implication of this symmetry is that suspense and surprise utility cannot distinguish

between decision problems G1 and G2 and between decision problems O1 and O2.

Proposition 2. Surprise and suspense utility agents prefer the early option P to the late option

Q in problem G1 if and only if they prefer P to Q in problem G2.
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Proof. The symmetry of belief paths between problems G1 and G2 yields

wsurprise(1/3, 1, 1) = u(8/9) = wsurprise(2/3, 0, 0)

and

wsurprise(1/3, 0, 0) = u(2/9) = wsurprise(2/3, 1, 1)

hence the early option P yields the same surprise utility 2

3
u
�
2

9

�
+ 1

3
u
�
8

9

�
in both G1 and G2.

Likewise, the late option Q yields the same surprise utility 2

3
u
�

1

18

�
+ 2

3
u
�
1

2

�
+ 1

3
u
�
2

9

�
in both

G1 and G2. Direct calculation yields the same result for suspense utility.

Proposition 3. Surprise and suspense utility agents are indi↵erent in problems O1 and O2.

Proof. Direct calculation shows both options yield suspense utility u(4/9) in O1 and O2, and

again both options yield surprise utility 2

3
u
�
2

9

�
+ 1

3
u
�
8

9

�
in O1 and O2.

Surprise utility o↵ers a sharper prediction for G1 and G2:

Proposition 4. Surprise utility agents strictly prefer the late option Q in both G1 and G2.

Proof. The index u in surprise utility is increasing and strictly concave, with u(0) = 0. Hence,

u(1/18) + u(1/2) = [u(1/18)� u(0)] + [u(1/2)� u(1/9)] + u(1/9)

> [u(1/9)� u(1/18)] + [u(8/9)� u(1/2)] + u(1/9)

> u(2/9)� u(1/18) + u(8/9)� u(1/2)

which yields 2

3
u
�

1

18

�
+ 2

3
u
�
1

2

�
+ 1

3
u
�
2

9

�
> 2

3
u
�
2

9

�
+ 1

3
u
�
8

9

�
as desired.

In an extension, Ely, Frankel and Kamenica (2015) allow the agent to care more about the

suspense and surprise associated with one outcome than the suspense and surprise associated

with another. This modification generalizes the model when there are more than two outcomes

but has no e↵ect in our setting with only two outcomes. In the binary setting, changes in

the probability of winning must coincide with changes in the probability of losing and, thus, as

long as utility depends only on belief-variation the model cannot capture di↵erences in subjects’

behavior between decision problems G1 and G2 and between decision problems O1 and O2.
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In another extension of their model, Ely, Frankel and Kamenica (2015) introduce discounting

and allow the agent to give di↵erent weights to surprise and suspense delivered in di↵erent

periods. This extension breaks the prediction of indi↵erence between early and late resolution,

and can accommodate a strict preference in problems O1 and O2, but still requires the same

preference across the two problems.

Peaks and Troughs

Fredrickson and Kahneman (1993) argue that, in retrospective evaluations, subjects neglect the

duration of experiences and emphasize extremes. Peak-trough utility theory (Gul et al., 2021)

o↵ers a simple theoretical framework in which agents place special emphasis on their best and

worst experiences. A path utility, w, assigns a value to each path and the utility of a random

evolving lottery, P , is the expected utility of these paths:

W (P ) =
X

↵

w(↵)P (↵). (1)

To define the path utility function of peak-trough utility, let u be the DM’s expected utility

function over lotteries. Then, define the peak, u, and trough, u, utilities of any path ↵ =

(↵1, . . . ,↵N) as follows:

u(↵1, . . . ,↵N) = max
t

u(↵t)

u(↵1, . . . ,↵N) = min
t

u(↵t)

Let v : [0, 1] ! [0, 1] be a strictly increasing, continuous and onto function and let ✓h, ✓` be

weights such that

1� ✓h � ✓` > 0

(1� ✓h � ✓`)/N + ✓h > 0

(1� ✓h � ✓`)/N + ✓` > 0
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Then, the utility of any path ↵ = (↵1, . . . ,↵n) is

w(↵) =
1� ✓h � ✓`

N

NX

t=1

v(u(↵t)) + ✓hv(u(↵1, . . . ,↵N)) + ✓`v(u(↵1, . . . ,↵N)) (2)

The function W defined in (1) is a peak-trough utility whenever w is as described in (2).

Compared to the standard expected utility model, a peak-trough utility has three new pa-

rameters; the index v which determines the agent’s preference for early or late resolution of

uncertainty and the weights ✓h, ✓` which determine the agent’s sensitivity to the best and worst

experiences. If we assume v is linear and set the weights ✓h = ✓` = 0, then we are back to the

standard model.2

It is easy to relate the parameters of peak-trough utility to the decision problems in our

experiment. Consider, the two options in decision problem G1. To facilitate their comparison,

we again write the options as a matrix where each row is an equally likely belief path. The

early resolution option

P =

2

6664

1/3 1 1

1/3 0 0

1/3 0 0

3

7775
yields the peaks

2

6664

1

1/3

1/3

3

7775
and the troughs

2

6664

1/3

0

0

3

7775
,

while the late resolution option

Q =

2

6664

1/3 1/2 1

1/3 1/2 0

1/3 0 0

3

7775
yields the peaks

2

6664

1

1/2

1/3

3

7775
and the troughs

2

6664

1/3

0

0

3

7775
.

Note that the distribution of path troughs is identical for P and Q: both o↵er a trough of

zero with probability 2/3 and a trough of 1/3 with probability 1/3. Therefore, the value of ✓`

plays no role in their comparison.

The following proposition relates the optimal choice in decision problem G1 to the param-

eters v and ✓h of peak-trough utility.

2
For simplicity, we assumed that each period has the weight 1/N . A more general model would permit

discounting. Gul et al. (2021) provide an axiomatic foundation for this, more general, model.
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Proposition 5. Let W be a peak-trough utility with parameters (v, ✓h, ✓`), and let P and Q be

the early and late options, respectively, in decision problem G1.

(i) If v is linear, then W (Q) > W (P ) if and only if ✓h > 0.

(ii) If v is convex, then W (Q) > W (P ) implies ✓h > 0.

(iii) If v is concave, then W (P ) > W (Q) implies ✓h < 0.

Proof. Applying the path utility formula (2) and using the fact that v(0) = 0 and v(1) = 1 we

obtain

W (Q)�W (P ) =
1

3


w

✓
1

3
,
1

2
, 1

◆
+ w

✓
1

3
,
1

2
, 0

◆
+ w

✓
1

3
, 0, 0

◆
� w

✓
1

3
, 1, 1

◆
� 2w

✓
1

3
, 0, 0

◆�

=
1� ✓h � ✓`

9


2v

✓
1

2

◆
� 1

�
+

✓h
3


v

✓
1

2

◆
� v

✓
1

3

◆�

If v is linear then W (Q)�W (P ) above simplifies to ✓h
18

and, therefore, part (i) follows. If v is

convex, then 2v(1/2)  1 and, therefore, W (Q)�W (P ) > 0 implies ✓h > 0 which proves part

(ii). If v is concave, then 2v(1/2) � 1 and, therefore, W (P )�W (Q) > 0 implies ✓h < 0 which

proves part (iii).

Subjects with ✓h < 0 dislike getting their hopes up. Therefore, they tend to prefer the early

option in G1. Subjects with ✓h > 0 enjoy paths that look promising even if things don’t pan

out in the end. These subjects tend to prefer the late option in G1. As we showed above the

late resolution option Q o↵ers a better distribution of path peaks (in the sense of first order

stochastic dominance) than the early resolution option P .

Next, consider decision problem G2, which is similar to G1 but now two of the three boxes

contain the prize. The early resolution option

P =

2

6664

2/3 1 1

2/3 1 1

2/3 0 0

3

7775
yields the peaks

2

6664

1

1

2/3

3

7775
and the troughs

2

6664

2/3

2/3

0

3

7775
,
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while the late resolution option

Q =

2

6664

2/3 1 1

2/3 1/2 1

2/3 1/2 0

3

7775
yields the peaks

2

6664

1

1

2/3

3

7775
and the troughs

2

6664

2/3

1/2

0

3

7775
.

Note the early option P and the late option Q generate the same distribution of path peaks:

the peak is 2/3 with probability 1/3 and it is 1 the remaining 2/3 of the time. Therefore,

✓h plays no role in the comparison P versus Q. The next proposition relates the remaining

parameters v and ✓` of peak-trough utility to the choice in decision problem G2.

Proposition 6. Let W be a peak-trough utility with parameters (v, ✓h, ✓`), and let P and Q be

the early and late options, respectively, in decision problem G2.

(i) If v is linear, then W (Q) > W (P ) if and only if ✓` < 0.

(ii) If v is convex, then W (Q) > W (P ) implies ✓` < 0.

(iii) If v is concave, then W (P ) > W (Q) implies ✓` > 0.

Proof. The peak-trough utility agent prefers the late option Q whenever the di↵erence

W (Q)�W (P ) =
1� ✓h � ✓`

9
[2v(1/2)� 1] +

✓`
3
[v(1/2)� v(2/3)] (3)

is positive. If v is linear, then (3) simplifies to � ✓`
18

and, therefore, part (i) follows. If v is

convex, then 2v(1/2)  1 and, therefore, W (Q)�W (P ) > 0 implies ✓` < 0 which proves part

(ii). If v is concave, then 2v(1/2) � 1 and, therefore, W (P )�W (Q) > 0 implies ✓` > 0 which

proves part (iii).

Subjects with ✓` > 0 enjoy paths with comebacks; that is, they like paths that end well

despite the good outcome seeming unlikely at an earlier stage. Those with ✓` < 0 dread such

paths. The random evolving lottery Q di↵ers from P in the distribution of troughs. As shown

above, Q is equally likely to yield the troughs 2/3, 1/2, and 0, while P yields the trough 2/3

with probability 2/3 and 0 with probability 1/3. As we noted above, the two random evolving

lotteries o↵er the same distribution of peaks and therefore, ✓h plays no role in their comparison.
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In decision problem O1 (and O2), the agent considers a simple timing trade-o↵. One choice

reveals all information in period 1 while the other reveals all information in period 3. The early

resolution option in O1

P =

2

6664

2/3 1 1

2/3 1 1

2/3 0 0

3

7775
yields the peaks

2

6664

1

1

2/3

3

7775
and the troughs

2

6664

2/3

2/3

0

3

7775
,

and the late resolution option

Q =

2

6664

2/3 2/3 1

2/3 2/3 1

2/3 2/3 0

3

7775
yields the same peaks

2

6664

1

1

2/3

3

7775
and troughs

2

6664

2/3

2/3

0

3

7775
.

Therefore the weights ✓` and ✓h play no role in the comparison. And, as the following proposition

shows, only the curvature of v matters.

Proposition 7. Let W be a peak-trough utility with parameters (v, ✓h, ✓`) and let P and Q be

the early and late options, respectively, in decision problem O1. If v is convex (concave) then

W (P ) > W (Q) (W (P ) < W (Q)).

Proof. The di↵erence in utility between the early option P and the late option Q in problem

O1 is given by,

W (P )�W (Q) =
1� ✓h � ✓`

3
[c� v(c)] (4)

Since v(c) � c if v is concave and v(c)  c if v is convex, the result follows from (4).

5 Experimental Results

We first analyze the subjects’ strength of preferences. Figure 1 shows the distribution of the

required compensation for switching away from the preferred mode of information disclosure.

We exclude 3 of the 125 subjects because their responses to the strength of preference question

were not monotone. As Figure 1 shows, depending on the decision problem, 16–25% of subjects
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are indi↵erent; that is, are willing to switch their choice if they are o↵ered just one cent.

Furthermore, only 16% of subjects are indi↵erent in all of the decision problems.
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Figure 1: Distribution of the minimum required compensation for switching their choices for
each decision problem

As can be seen from Figure 1, approximately 1/3 of the subjects are unwilling to switch

away from their preferred mode of information disclosure even if they are o↵ered $0.50. In

other words, these subjects are willing to give up more than 5% of the surplus to obtain their

preferred mode of information disclosure.

Result 1: The majority of the subjects have a strict preferred mode of information disclosure

regarding the resolution of uncertainty.

Since the standard model predicts indi↵erence between P andQ in all four decision problems,

Result 1 reveals that the predictions of the standard model fail for the vast majority of our

experimental subjects.

Next, we investigate the strict preference of the subjects. Table 1 shows the aggregate

choice percentages in the four decision problems for subjects who exhibit strict preference for

resolution of uncertainty.
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Table 1: Aggregate choice percentages for early resolution of uncertainty for subjects who
exhibit strict preference

Problem % Early p-value Conclusion

G1 39.22 0.015 Q � P
G2 58.95 0.041 P � Q
O1 65.59 0.001 P � Q
O2 65.22 0.004 P � Q

The numbers of subjects who exhibit strict preference in G1, G2, O1, and O2 are 102, 95, 93, and 92, respectively. p-values

are from one-sample test of proportions.

As it can be seen in Table 1, subjects’ strict preference is toward early resolution of uncer-

tainty when all boxes are opened simultaneously. In the decision problems O1 and O2, 65.59%

and 65.22% of the subjects prefer early resolution of uncertainty, respectively. When the boxes

are opened sequentially, for decision problem G2; that is when two boxes contain a prize, still

58.95% of the subjects prefer early resolution of uncertainty. However, for decision problem G1;

that is, when there is only one prize, the preference is reversed: 60.78% of the subjects prefer

the late resolution of uncertainty. As an additional test to compare the distribution of choices

in each decision problem, we look at the choices of 88 subjects who exhibit strict preference

in all of the decision problems. Based on sign tests, there is no significant di↵erence when the

boxes are opened simultaneously (O1 vs O2, p=1.000) but there is a significant di↵erence when

the boxes are opened sequentially (G1 vs G2, p=0.005). Furthermore, whether opening boxes

simultaneous or sequentially matters only when there is a single prize (O1 vs G1, p=0.001; O2

vs G2, p=0.286). We provide further robustness analyses of this result in the Appendix.

Result 2: While the majority of the subjects strictly prefer early resolution of uncertainty in

O1, O2, and G2, the late resolution of uncertainty is strictly preferred in G1.

A categorical preference for early resolution in O1 and O2, where uncertainty always re-

solves in a single moment, is consistent with the results in the previous literature. Result 2,

however, identifies a novel pattern of information demand when gradual information disclosure

is involved. Subjects still opt for early resolution in problem G2, where the late option provides

gradual information with conclusive good news and partial bad news. However, subjects opt

for late over immediate disclosure in problem G1, where the late option provides gradual good

18



news coupled with conclusive bad news.

The observed di↵erence in behavior between problems G1 and G2 is incompatible with

standard theory and with several alternative models of demand for non-instrumental informa-

tion that have been developed more recently. Section 4 showed that preferences over temporal

lotteries in Kreps and Porteus (1978), preferences for one-shot resolution of uncertainty in Dil-

lenberger (2010), and surprise and suspense utility in Ely et al. (2015) all predict identical

behavior across G1 and G2, and are incompatible with Result 2.

Section 4 shows that a di↵erence in behavior between G1 and G2 can be understood as

arising from subjects’ special emphasis on their best (peak) and worst (trough) experiences

along their realized path of uncertainty. In particular, the late option Q in G1 o↵ers a better

distribution of path peaks than the early option P , while o↵ering the same distribution of

path troughs. Conversely, in problem G2 the early option P o↵ers a better distribution of

path troughs than the late option Q, while o↵ering the same distribution of path peaks. The

preferences in Table 1 can be captured by a peak-trough utility agent with a convex v and

a weight ✓h > 0 given to path peaks. The interpretation o↵ered by peak-trough utility is

that subjects enjoy paths that look promising, even when they are not likely to end well. In

summary, Result 2 provides evidence that the emphasis on peaks and troughs captured by

the peak-trough utility model (Gul et al., 2021) may be a quantitatively important aspect of

decision-making behavior.

6 Heterogeneous Types

The averages reported in Table 1 conceal substantial heterogeneity among subjects. The dis-

tribution of all decisions is shown in Table 2. The most prevalent types of demand for non-

instrumental information fall into four categories:

Thrill seeker: 29% of non-indi↵erent subjects would never pay for late resolution of uncer-

tainty in O1 and O2, where all uncertainty is resolved at once, but switch to a strict preference

for late resolution in problem G1 (and, in some cases, in both G1 and G2) when the late option

provides gradual information. This behavior is consistent with peak-trough utility agents with

a convex v and su�ciently high weight ✓h given to path peaks. Among them, those with a
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su�ciently low ✓` will switch to strict preference for late resolution in both G1 and G2. For

example, let v(↵) = ↵� for � > 1. Then, the agent is a thrill seeker with strict preference for

late resolution in G1 and G2 if and only if

✓h > 3��1
2� � 2

3� � 2�

✓` < 3��1
2� 2�

4� � 3�

The parameters � = 1.1, ✓h = .2, ✓` = �.2, for instance, satisfy these conditions.

Information seeker: 22% of non-indi↵erent subjects prefer early resolution of uncertainty in

each of the four decision problems. Peak-trough agents are information seeking types if their v

is convex, ✓h is not too large (or negative) and ✓` is not too negative (or positive).

Information avoider: 13% of non-indi↵erent subjects prefer late resolution of uncertainty in

each of the four decision problems. Peak-trough agents are information avoiding types if their

v is strictly concave, ✓h � 0 and ✓`  0.

Thrill avoider: 8% of non-indi↵erent subjects prefer early resolution of uncertainty when

uncertainty is resolved gradually, i.e. in problems G1 and G2, but they strictly prefer late

resolution in at least one of the decision problems where all uncertainty is resolved at once, i.e.

in problem O1, problem O2, or both. For example, an individual who prefers early resolution

in G1 and G2 but prefers late resolution in O1 and O2 is compatible with peak-trough utility

when v is concave, ✓` is su�ciently high and ✓h is su�ciently negative.

7 Conclusion

Our simple experimental design o↵ers an ideal setting for calibrating and testing models of

demand for information. Our experiment o↵ers strong evidence that subjects prefer gradual

resolution of uncertainty over early or late resolution, when information about winning yields

decisive bad news but inconclusive good news. Our main findings are di�cult to reconcile with

standard theory and with many of the existing models of demand for non-instrumental informa-

tion, including the Kreps-Porteus model. We showed that these findings can be understood as
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G1 G2 O1 O2 Percentage

Early Early Early Early 19%
Indi↵ Indi↵ Indi↵ Indi↵ 16%
Late Early Early Early 12%
Late Late Late Late 11%
Late Late Early Early 7%
Early Late Early Late 4%
Early Early Late Late 3%
Late Early Late Early 3%
Early Early Late Early 2%
Late Indif. Indif. Indif. 2%
Late Late Indif. Indif. 2%
Late Late Early Late 2%
Late Late Late Early 2%
Late Early Early Late 2%
Late Early Late Late 2%
Early Indif. Early Indif. 1%
Early Indif. Early Late 1%
Early Early Late Indif. 1%
Early Late Early Early 1%
Early Late Late Early 1%
Late Indif. Indif. Early 1%
Late Indif. Late Indif. 1%
Late Early Indif. Late 1%
Late Early Early Indif. 1%
Late Late Indif. Late 1%

Table 2: Distribution of decisions in each problem.
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arising from the decision maker’s emphasis on their best (peak) and worst (trough) experiences

along the realized path of uncertainty. Our experiment has already inspired new developments

in the theory of demand for information (Gul et al., 2021; Duraj and He, 2023). We hope it

also inspires experimental work, both in the lab and in the field, to fully delineate the economic

consequences of the thrill of gradual learning.

22



References

Ahlbrecht, Martin and Martin Weber, “An empirical study on intertemporal decision

making under risk,” Management Science, 1997, 43 (6), 813–826.

Dillenberger, David, “Preferences for one-shot resolution of uncertainty and Allais-type be-

havior,” Econometrica, 2010, 78 (6), 1973–2004.

Duraj, Jetlir and Kevin He, “Dynamic Information Preference and Communication with

Diminishing Sensitivity Over News,” Working Paper, 2023.

Eliaz, Kfir and Andrew Schotter, “Paying for confidence: An experimental study of the

demand for non-instrumental information,” Games and Economic Behavior, 2010, 70 (2),

304–324.

Ely, Je↵rey, Alexander Frankel, and Emir Kamenica, “Suspense and surprise,” Journal

of Political Economy, 2015, 123 (1), 215–260.

Epstein, Larry G and Yoram Halevy, “Ambiguous correlation,” Review of Economic

Studies, 01 2018, 86 (2), 668–693.

Falk, Armin and Florian Zimmermann, “Beliefs and utility: Experimental evidence on

preferences for information,” Working paper, 2016.

Fischbacher, Urs, “z-Tree: Zurich toolbox for ready-made economic experiments,” Experi-

mental Economics, 2007, 10 (2), 171–178.

Fredrickson, Barbara L and Daniel Kahneman, “Duration neglect in retrospective eval-

uations of a↵ective episodes.,” Journal of Personality and Social Psychology, 1993, 65 (1),

45.

Ganguly, Ananda and Joshua Taso↵, “Fantasy and Dread: The Demand for Information

and the Consumption Utility of the Future,” Management Science, 2017, 63 (12), 4037–4060.

Golman, Russell, David Hagmann, and George Loewenstein, “Information Avoidance,”

Journal of Economic Literature, 2017, 55 (1), 96–135.

Greiner, Ben, “Subject pool recruitment procedures: organizing experiments with ORSEE,”

23



Journal of the Economic Science Association, 2015, 1, 114–125.

Gul, Faruk, Paulo Natenzon, and Wolfgang Pesendorfer, “Random Evolving Lotteries

and Intrinsic Preference for Information,” Econometrica, 2021, 89 (5), 2225–2259.

Kreps, David M and Evan L Porteus, “Temporal resolution of uncertainty and dynamic

choice theory,” Econometrica, 1978, pp. 185–200.

Masatlioglu, Yusufcan, A Yesim Orhun, and Collin Raymond, “Intrinsic information

preferences and skewness,” Ross School of Business Paper, 2017.

, , and , “Intrinsic Information Preferences and Skewness,” American Economic Review,

2023, 223 (12), 2615–2644.

Nielsen, Kirby, “Preferences for the resolution of uncertainty and the timing of information,”

Journal of Economic Theory, 2020, 189, 105090.

Oster, Emily, Expecting Better: Why the Conventional Pregnancy Wisdom is Wrong–and

what You Really Need to Know, Penguin, 2014.

, Ira Shoulson, and E Dorsey, “Optimal expectations and limited medical testing: evi-

dence from Huntington disease,” American Economic Review, 2013, 103 (2), 804–30.

Palacios-Huerta, Ignacio, “The aversion to the sequential resolution of uncertainty,” Journal

of Risk and Uncertainty, 1999, 18 (3), 249–269.

Zimmermann, Florian, “Clumped or piecewise? Evidence on preferences for information,”

Management Science, 2015, 61 (4), 740–753.

24



A Appendix: Instructions

Welcome and thank you for coming today to participate in this experiment. This is an ex-

periment in decision making. Your earnings will depend on your own decisions and chance.

It will not depend on the decisions of the other participants in the experiment. Please pay

careful attention to the instructions as a considerable amount of money is at stake. The entire

experiment is expected to finish within 30 minutes. At the end of the experiment you will be

paid privately. At this time, you will receive $7 as a participation fee (simply for showing up

on time).

In this experiment, you will participate in four independent decision questions that share

a common form. At the end of the the experiment, the computer will randomly select one

decision question. The question selected depends solely upon chance, and each one is equally

likely. The question selected, your choice and your payment in that question will be shown.

Your final earnings in the experiment will be your earnings in the selected question plus $7

show-up fee.

During the experiment it is important that you do not talk to any other subjects. Please

turn o↵ your cell phones. If you have a question, please raise your hand, and the experimenter

will come by to answer your question. Failure to comply with these instructions means that

you will be asked to leave the experiment and all your earnings will be forfeited.

A.1 Decision Questions

A.1.1 G1

In the next screen, you will be shown three identical looking boxes. One of the boxes contain

a prize of $10, the other two boxes do not contain any prize. Your task is to select one of the

boxes by clicking on the box of your choice. If the box you selected contains a prize, you will

earn $10 in this decision question. If the box you selected does not contain a prize, you will

not earn or lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened sequentially. First, one of the boxes will be opened. 60 seconds later, another

box will be opened. The last box will be opened 60 seconds after the second box is opened.

25



You will see the time counter in the upper-right corner of your screen.

A.1.2 G2

In the next screen, you will be shown three identical looking boxes. Two of the boxes contain

a prize of $10, the other box does not contain any prize. Your task is to select one of the boxes

by clicking on the box of your choice. If the box you selected contains a prize, you will earn $10

in this decision question. If the box you selected does not contain a prize, you will not earn or

lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened sequentially. First, one of the boxes will be opened. 60 seconds later, another

box will be opened. The last box will be opened 60 seconds after the second box is opened.

You will see the time counter in the upper-right corner of your screen.

A.1.3 O1

In the next screen, you will be shown three identical looking boxes. One of the boxes contain

a prize of $10, the other two boxes do not contain any prize. Your task is to select one of the

boxes by clicking on the box of your choice. If the box you selected contains a prize, you will

earn $10 in this decision question. If the box you selected does not contain a prize, you will

not earn or lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened simultaneously. All three boxes can be opened immediately, or all three boxes

can be opened after 120 seconds. You will see the time counter in the upper-right corner of

your screen.

A.1.4 O2

In the next screen, you will be shown three identical looking boxes. Two of the boxes contain

a prize of $10, the other box does not contain any prize. Your task is to select one of the boxes

by clicking on the box of your choice. If the box you selected contains a prize, you will earn $10

in this decision question. If the box you selected does not contain a prize, you will not earn or

lose any amount in this decision question.
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In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened simultaneously. All three boxes can be opened immediately, or all three boxes

can be opened after 120 seconds. You will see the time counter in the upper-right corner of

your screen.

Sample screenshots
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A.2 Willingness to Switch Elicitation

For the decision question where there {is one prize/ are two prizes} and the boxes will be opened

{sequentially / simultaneously}, you choose your box to be opened {subject’s response}. Now,

you will see 10 questions, each of which will ask you whether you would change your choice

from opening your box {subject’s response} to opening your box {unchosen response} if we

compensated you for the amount specified in that question. You will answer by selecting Yes

or No.

If this decision question is randomly selected to be played, then one of the 10 questions

for this decision question will be randomly selected by the computer. Each question is equally

likely, and your choice in the selected question will determine whether your box will be opened

first or last. If you select Yes, you will receive the monetary compensation specified in that

question but you will change your choice, so your box will be opened {unchosen response}. If

you select No, you will keep your choice, so your box will be opened {subject’s response}.

The more you want the option you chose (opening your box {subject’s response}) over the

option you rejected (opening your box {unchosen response}), the higher compensation you

should require to give up your choice and switch to the option you did not want. Think about

what compensation is too little for you to switch your choice, and what compensation would

be enough. Accordingly, click Yes or No for each question.
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B Appendix: Further Analysis

This appendix contains further robustness checks of our main results. Table 3 shows the per-

centage of subjects choosing early resolution does not significantly change depending on the

ordering in which the question appeared. Table 4 presents a logistic regression for all subjects,

with errors clustered at the subject level, and includes dummies for question ordering. Ta-

bles 5–8 provide Wilcoxon matched-pairs signed-rank tests of the null hypothesis that di↵erent

treatments, namely one-shot versus gradual and one prize versus two prizes, yield the same

distribution of behavior.

Table 3: Percentages of subjects choosing early resolution of uncertainty in di↵erent question
orders for subjects who exhibit strict preference

Questions Order that question appears

1st 2nd 3rd 4th

G1 33.33 44.00 38.46 41.67
G2 58.33 60.00 60.87 56.52
O1 62.50 75.00 60.87 63.64
O2 58.33 69.57 66.67 66.67
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Table 4: Logistic regression of choosing Late with respect to G1 decision for all subjects

(1)
Late

G2 -0.789***
(0.202)

O1 -1.068***
(0.239)

O2 -1.068***
(0.245)

Order-2 -0.0999
(0.388)

Order-3 -0.075
(0.391)

Order-4 -0.139
(0.385)

Constant 0.111
(0.291)

Observations 488

Standard errors clustered at subject level are in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 5: Frequencies of subject’s choices in pair (G1, G2)

G2
Early Late Indi↵erent

G1
Early 31 7 2
Late 25 32 5
Indi↵erent 0 0 20

Notes : Wilcoxon matched-pairs signed-rank test (Z = 3.38, p = 0.0007).

Table 6: Frequencies of subject’s choices in pair (G1, O1)

O1
Early Late Indi↵erent

G1
Early 31 9 0
Late 30 23 9
Indi↵erent 0 0 20

Notes : Wilcoxon matched-pairs signed-rank test (Z= 4.19, p = 0.0000).

Table 7: Frequencies of subject’s choices in pair (G2, O2)

O2
Early Late Indi↵erent

G2
Early 45 9 2
Late 14 22 3
Indi↵erent 1 1 25

Notes : Wilcoxon matched-pairs signed-rank test (Z = 1.10, p = 0.270).

Table 8: Frequencies of subject’s choices in pair (O1, O2)

O2
Early Late Indi↵erent

O1
Early 48 11 2
Late 11 19 2
Indi↵erent 1 2 26

Notes : Wilcoxon matched-pairs signed-rank test(Z = -0.167, p = 0.868).
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