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The standard model of the consumer poses a binary relation over choice options,
where i � j means she always finds option i strictly better than j. However, in
economic analysis, researchers often find it necessary to replace this deterministic
preference model with a random choice model described by a probability ρ(i, j)
between zero and one for each i and j. In the econometric analysis of demand,
this probability captures heterogeneity of tastes: ρ(i, j) represents the proportion
of a population of consumers that prefers i to j. By contrast, in psychology,
behavioral economics, and experimental economics, ρ(i, j) captures variability in
individual choices, describing the probability that an individual selects i in a
binary comparison against j.

A wide variety of commonly used random choice models —including Hotelling’s
and Salop’s spatial competition models, as well as the classic logit, nested logit,
probit, covariance probit, and elimination-by-aspects — are special cases of the
moderate utility model proposed in psychology by Halff (1976). In this model, the
probability that an option i is preferred to another option j is given by:

(MUM) ρ(i, j) = F

(
u(i)− u(j)

d(i, j)

)
The utility function u in the MUM represents the value of each option. The
distance metric d captures the differentiation between the options and reflects
their substitutability and their comparability. The ratio [u(i) − u(j)]/d(i, j) can
be interpreted as the strength of preference for option i over option j. The
increasing transformation F maps strength of preference to choice probabilities
and satisfies F (x) = 1− F (−x) for all x.

Despite its ubiquity and wide-ranging application, the consequences of the
MUM formula for observable choice behavior —that is, a set of necessary and
sufficient conditions that exhaust the testable implications of the model— have
not been established. Our main contribution is to fully determine the empirical
content of the MUM formula, providing behavioral foundations for binary discrete
choice with a role for differentiation.

We identify a single, directly testable, non-parametric condition that fully char-
acterizes the model. Our main result (Theorem 1) shows that a binary choice rule
ρ over a finite set of alternatives can be represented by the MUM if and only if
it is moderately transitive. This condition requires that if i is preferred to j with
probability larger than one-half and, in turn, j is preferred to k with probabil-
ity larger than one-half, then the probability that i is preferred to k must lie
above the minimum of those two probabilities. For example, if ρ(i, j) = 0.6
and ρ(j, k) = 0.8, moderate transitivity requires that ρ(i, k) > 0.6. Moderate
transitivity is a less studied, intermediate condition between the two well-known
postulates of weak transitivity (which for the same antecedent requires the less
demanding conclusion ρ(i, k) > 0.5 in the example above) and strong transitivity
(which requires the more demanding conclusion ρ(i, k) > 0.8).

The transitivity postulates above are directly testable in data by checking sim-
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ple moment inequalities. In Section I, we present the formal definitions and apply
them to examples drawn not only from economics, but also from psychology and
biology (Figures 1–3). We use these examples throughout the paper for illustra-
tive purposes. They belong to a robust class of empirical phenomena in which
strong transitivity fails, but moderate transitivity still holds. By Theorem 1,
all these examples can be accommodated by the MUM. In addition, we show
that moderately transitive models retain significantly more empirical bite and
predictive power out-of-sample than weakly transitive models. Thus, Theorem 1
implies that the MUM provides the analyst with a valuable modeling compromise
between flexibility and predictive power.

We contribute to an important literature that seeks to establish the equivalence
between binary stochastic choice models and their testable implications (see Fig-
ure 4). Existing characterizations by Debreu (1958), Luce (1959), Tversky and
Russo (1969), Fudenberg, Iijima and Strzalecki (2015) study models which ig-
nore the role of differentiation and impose strong transitivity. Theorem 1 is the
first result to provide behavioral foundations for binary discrete choice allowing
varying degrees of differentiation between the options.

Some special cases of the MUM are also instances of the random utility model
(RUM) characterized by Block and Marschak (1959) and Falmagne (1978). We
show that, despite having a non-empty intersection, neither the MUM nor the
RUM nest each other.

The paper is organized as follows: Section I introduces the setup and the tran-
sitivity postulates. Section II presents the moderate utility model and contains
our main result. Section III compares our result to previous existing characteri-
zations and obtains a generalization. Section IV concludes the paper by showing
the MUM is not nested nor nests the classic random utility model.

I. Stochastic Choice and Transitivity

We begin with some definitions. Let Z be a finite set of choice options. A
(binary, stochastic) choice rule on Z is a function ρ : Z2 → [0, 1] such that
ρ(i, j) + ρ(j, i) = 1 for every i, j ∈ Z. When ρ represents demand in a population
of standard rational consumers, the number ρ(i, j) is the proportion of the popu-
lation that prefers i to j. When ρ represents individual stochastic choice, ρ(i, j)
is the probability that the decision maker selects option i in a binary comparison
against j.

A choice rule may satisfy one of several probabilistic versions of the classic
transitivity postulate. The two best known notions of stochastic transitivity for
binary choice data are weak transitivity and strong transitivity. A choice rule ρ
satisfies weak transitivity when for any i, j, k ∈ Z,

min{ρ(i, j) ρ(j, k)} ≥ 1/2 implies ρ(i, k) ≥ 1/2.
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A choice rule ρ satisfies strong transitivity when for all i, j, k ∈ Z,

min{ρ(i, j) ρ(j, k)} ≥ (>) 1/2 implies ρ(i, k) ≥ (>) max{ρ(i, j), ρ(j, k)}.

where a strict inequality in the hypothesis implies a strict inequality in the
conclusion. Weak and strong transitivity are well-studied in the literature (see
Rieskamp, Busemeyer and Mellers, 2006). In this paper we focus on a less studied,
intermediate form of transitivity. A choice rule ρ satisfies moderate transitivity
when for all i, j, k ∈ Z,

min{ρ(i, j) ρ(j, k)} ≥ 1/2 implies

 ρ(i, k) > min{ρ(i, j), ρ(j, k)}
or
ρ(i, k) = ρ(i, j) = ρ(j, k)

It is clear from the definitions above that strong implies moderate and moderate
implies weak transitivity.

Marschak (1960) attributed the formulation of the moderate transitivity pos-
tulate to Chipman (1958, 1960) and Georgescu-Roegen (1958). Our adopted
formulation is identical to Georgescu-Roegen (1958) and Fishburn (1978), but
the postulate also often appears in a slightly weaker version with the requirement
ρ(i, k) ≥ min{ρ(i, j), ρ(j, k)} in the conclusion. The difference is that our adopted
formulation rules out the knife-edge case

max{ρ(i, j), ρ(j, k)} > ρ(i, k) = min{ρ(i, j), ρ(j, k)}.

However, the two formulations are empirically indistinguishable with finite data.
The transitivity postulates are directly testable in choice data by checking sim-

ple moment inequalities. We now show that moderate transitivity achieves a
useful compromise between explanatory power and predictive power. First, we
show that moderate transitivity often holds in empirical settings where strong
transitivity is systematically violated. We then show that a model that imposes
moderate transitivity affords the analyst significantly more predictive power out-
of-sample than just imposing weak transitivity.

An early theoretical example suggests that strong transitivity is too stringent
of a requirement to describe choice behavior with pairs of options that vary in
their degree of differentiation and comparability:

EXAMPLE 1 (Georgescu-Roegen (1958)): A consumer is equally likely to choose
either option between two consumption bundles A = (a1, a2, · · · , an) and B =
(b1, b2, · · · , bn) because they involve several hard-to-evaluate tradeoffs across the n
commodities. That is ρ(A,B) = 1/2. Now consider a small improvement in the
first bundle A′ = A + ∆ where ∆ ≥ 0. It is reasonable to expect the consumer
to clearly prefer the improved bundle over the original bundle ρ(A′, A) = 1. It is
not reasonable, however, to expect strong transitivity to hold in this case, since
it would imply that all the difficulty must be resolved by the small improvement
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ρ(A′, B) ≥ max{ρ(A′, A), ρ(A,B)} = 1. Moderate transitivity is more reasonable,
requiring only that ρ(A′, B) > min{ρ(A′, A), ρ(A,B)} = 1/2.

The example above is also attributed by Luce and Suppes (1965) to L. J. Savage.
In Savage’s rendition, a child has difficulty choosing between a bicycle (option A)
and a pony (option B). A store owner brings in a second bicycle that is identical to
the first bicycle but clearly better in minor ways, such as having a bell (option A’).
The child still hesitates. An impatient parent forces the child to choose between
the two bicycles, and the child immediately picks the slightly better bicycle. The
same example is also recast by Tversky (1972a) with a trip to Paris (option A), a
trip to Paris enhanced by small monetary bonus (option A’) and a trip to Rome
(option B).

Example 1 suggests that strong transitivity should be violated systematically
in real-world choice data and, in fact, the accumulated evidence is very robust.
Reviewing some of this evidence, Mellers et al. (1992, p. 348) note that “weak
and moderate stochastic transitivity are often satisfied, although a few exceptions
have been noted,” while “[s]trong stochastic transitivity is frequently violated.”
Chipman (1960) provides perhaps the earliest empirical demonstration of the
intuition behind Example 1 in economics.

Tversky and Russo (1969) provide a visually compelling demonstration of this
same intuition in psychology (see Figure 1). Note that the empirical violation of
strong transitivity in Figure 1 follows the recipe suggested by Example 1. Like
options A and A′, the first and second rectangles in Figure 1 are less differentiated
and therefore easier to compare. And like option B, the third rectangle is more
differentiated from the other options and therefore harder to compare.

Likewise, the different levels of differentiation between lotteries over money
also drive violations of strong transitivity in Figure 2 below. Finally, the example
in Figure 3 is taken from animal mating choice experiments in biology, further
broadening the empirical reach of the intuition behind Example 1.

These examples show that strong transitivity is too strong to be descriptive:
relaxing it helps address a robust range of empirical phenomena. Conversely,
we now argue that the weak transitivity postulate is too weak: it allows that
ρ(i, k) = .51, for example, even if we observe that ρ(i, j) = ρ(j, k) = .95. Imposing
moderate transitivity, in this case, leads to the sharper and arguably more sensible
prediction ρ(i, k) ≥ .95.

To quantify this additional predictive power, let ρ be a weakly transitive choice
rule. Enumerate the options in Z = {1, . . . , n} in such a way that ρ(i, j) ≥ 1/2
whenever i ≤ j. For the sake of simplicity, let us assume that choice probabilities
differ whenever possible, so that the set {ρ(i, j) ∈ [0, 1] : i 6= j} has maximum
cardinality with n(n− 1) elements.

When Z = {1, 2, 3} has three alternatives, weak transitivity allows ρ to have
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67%

50%85%

Figure 1. Perceptual choice tasks.

Note: Tversky and Russo (1969) recorded hundreds of decisions by prison inmates in Michigan in per-
ceptual choice tasks. Subjects were shown many different pairs of rectangles and were asked to pick
the rectangle with the largest area in each pair. Three of these rectangles and their pairwise relative
frequencies of choice are shown above. The middle and right rectangles have equal areas, so that each
one is chosen 50% of the time in a binary comparison. The left rectangle is slightly larger than the others.
The same difference in area was more easily detected in pairs with less differentiated shapes (85% correct
answers) than in pairs with more differentiated shapes (67% correct answers). These frequencies violate
strong transitivity but satisfy moderate transitivity.
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Figure 2. Choice over lotteries.

Note: Soltani, De Martino and Camerer (2012) recorded thousands of choices by 21 male Caltech un-
dergraduates using simple lotteries that pay a cash prize of m dollars with probability p in the lab. A
high risk lottery h and a low risk lottery `, depicted above, were fine-tuned to each individual to be
approximately indifferent, (i.e., equally likely to be chosen in a binary comparison). Slightly perturbed
versions of h and ` were then offered for comparison against several types of ‘decoy’ lotteries. Above
we depict the relative location of two decoy lotteries 1 and 2 with respect to h and `. Decoy lottery 1
dominates ` and was chosen 95% of the time against ` but only 78% of the time against h. Thus, choice
frequencies violate strong transitivity in the direction 1→ `→ h. Decoy lottery 2, on the other hand, is
dominated by ` and was chosen 4% of the time against ` and 33% of the time against h. Hence, choice
frequencies also violate strong transitivity in the direction h→ `→ 2. It is easy to verify that moderate
transitivity holds in both cases.
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Figure 3. Animal studies.

Note: Lea and Ryan (2015) recorded hundreds of mating decisions by female túngara frogs. Female
túngara frogs choose mates based on the sound of their call. Above we depict how the calls of the
three male options A, B and C were differentiated along two desirable attributes. The horizontal axis
represents a measure of static attractiveness, and the vertical axis represents speed measured in calls per
second. In binary comparisons, option B was chosen in 63% of the trials against A; option A was chosen
in 84% of the trials against C; and option B was chosen in 69% of the trials against C. Choices therefore
satisfy moderate transitivity but violate strong transitivity.
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six strict orderings:

weakly transitive



ρ(1, 3) > ρ(1, 2) > ρ(2, 3)
 moderately transitive

ρ(1, 3) > ρ(2, 3) > ρ(1, 2)
ρ(1, 2) > ρ(1, 3) > ρ(2, 3)
ρ(2, 3) > ρ(1, 3) > ρ(1, 2)
ρ(1, 2) > ρ(2, 3) > ρ(1, 3)
ρ(2, 3) > ρ(1, 2) > ρ(1, 3)

Moderate transitivity rules out the last two of the six strict orderings, where
ρ(1, 3) < min{ρ(2, 3), ρ(1, 2)}. Let Weak(n) = [n(n−1)/2]! denote the number of
strict orderings allowed by weak transitivity when Z has n options, and likewise,
let Moderate(n) denote the number of strict orderings allowed by moderate tran-
sitivity. The ratio Moderate(n)/Weak(n) provides a measure of how restrictive
is moderate compared to weak transitivity. In the case n = 3 we just showed the
ratio Moderate(3)/Weak(3) is equal to 2/3. This ratio decreases to less than 1/4
when n = 4 and less than 1/17 when n = 5. In fact, the ratio is arbitrarily small
when n is large:

PROPOSITION 1: limn→∞Moderate(n)/Weak(n) = 0.

PROOF:
Let Z = {1, 2, . . . , n} be the finite set of alternatives. Consider the set of weakly

transitive choice rules ρ on Z with ρ(i, j) ≥ 1/2 whenever i ≤ j and for which
the set {ρ(i, j) ∈ [0, 1] : i 6= j} has maximum cardinality with n(n− 1) elements.
Each such ρ induces a strict ordering �ρ of the n(n + 1)/2 pairs Pn := {(i, j) :
1 ≤ i < j ≤ n} given by (i, j) �ρ (k, `) if and only if ρ(i, j) > ρ(k, `). This set
of choice rules ρ induces Weak(n) = [n(n− 1)/2]! different strict orderings �ρ on
Pn.

Moderate transitivity allows Moderate(n) different strict orderings over Pn.
Now consider the addition of alternative n+ 1 to the set Z.

LEMMA 1: Moderate(n+ 1) ≤ [n(n− 1)/2 + 1]n Moderate(n)

PROOF:
Take a single strict ordering over Pn compatible with moderate transitivity.

There are multiple ways to extend this strict ordering to incorporate the new
pairs (1, n+ 1), (2, n + 1), . . . , (n, n+ 1) and obtain a strict ordering over Pn+1

that preserves moderate transitivity. Since the original ordering has n(n − 1)/2
pairs, there are n(n−1)/2+1 different positions to include (n, n+ 1). In this way
we obtain n(n− 1)/2 + 1 different strict orderings, all of which respect moderate
transitivity. The total number of strict orderings over Pn ∪ {(n, n+ 1)} that sat-
isfy moderate transitivity is therefore [n(n− 1)/2 + 1] Moderate(n). Now we take
one such strict ordering and extend it to incorporate a second pair (n− 1, n+ 1).
This pair can in principle be added into n(n − 1)/2 + 2 different positions, but
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placing it in the very last position would violate moderate transitivity, since it re-
quires ρ(n− 1, n+ 1) > min{ρ(n− 1, n), ρ(n, n+ 1)}. The total number of strict
orderings over Pn∪{(n, n+ 1), (n− 1, n+ 1)} which satisfy moderate transitivity
must therefore be smaller or equal to [n(n − 1)/2 + 1]2 Moderate(n). A simple
inductive argument completes the proof. �

LEMMA 2: limn→∞

[∏n
k=1

n(n−1)/2+k
n(n−1)/2+1

]
= e

PROOF:
The result can be shown by verifying that, for each n,(

1 +
1

n

)n−1

≤

[
n∏
k=1

n(n− 1)/2 + k

n(n− 1)/2 + 1

]
≤
(

1 +
1

n

)n
and taking the limit as n→∞. We leave the details to the reader. �

Lemma 1 implies that

Moderate(n+ 1)

Weak(n+ 1)
≤ Moderate(n)

Weak(n)

[n(n− 1)/2]!

[n(n+ 1)/2]!
[n(n− 1)/2 + 1]n

=
Moderate(n)

Weak(n)

[
n∏
k=1

n(n− 1)/2 + 1

n(n− 1)/2 + k

]

and by Lemma 2 the last expression in brackets goes to 1/e when n goes to
infinity, where e ≈ 2.718 is the base of the natural logarithm. Hence for all
sufficiently large n the ratio Moderate(n + 1)/Weak(n + 1) is less than half the
ratio Moderate(n)/Weak(n), completing the proof. �

For completeness, we also show that

lim
n→∞

Strong(n)/Moderate(n) = 0.

The probability ρ(1, n) must be the highest in every strongly transitive ρ. For
each strict ordering satisfying strong transitivity, there exist at least n− 2 strict
orderings which violate strong transitivity but satisfy moderate transitivity: for
each k = 2, 3, . . . , n− 1 change the value of ρ(1, n) to max{ρ(1, k), ρ(k, n)}− ε for
ε > 0 sufficiently small. It follows that each resulting ranking violates strong tran-
sitivity. To see that moderate transitivity still holds, note that every inequality
required by strong transitivity holds, except those involving ρ(1, n). In addition,
strong transitivity implies that for each k, j = 2, . . . , n−1, max{ρ(1, k), ρ(k, n)} >
min{ρ(1, j), ρ(j, n)} hence for ε small we have ρ(1, n) > min{ρ(1, j), ρ(j, n)}.
Thus, Strong(n)/Moderate(n) ≤ 1/(n− 1)→ 0 when n→∞.

To summarize, a parametric choice model that spans the range of moderately
transitive choice behavior may be useful in two ways: first, it provides the flex-
ibility that is needed to accommodate empirical violations of strong transitivity.
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Second, it imposes significant restrictions out of sample —allowing the analyst to
make sharper predictions— than the more lenient weak transitivity. We describe
such a model in the next section.

II. Moderate Utility Model

A choice rule ρ on a finite set Z is a moderate utility model (MUM) if there
is a utility function u : Z → R, a distance metric d : Z2 → R+ and a strictly
increasing function F , such that for all i 6= j,

(1) ρ(i, j) = F

(
u(i)− u(j)

d(i, j)

)
where F satisfies F (x) = 1−F (−x) for all x. This last requirement automatically
follows from F (x) = ρ(i, j) = 1 − ρ(j, i) = 1 − F (−x). The MUM formula (1) is
proposed by Halff (1976) and its psychological foundations can be traced back to
Fechner (1859) and Thurstone (1927). The utility u represents the value of each
option. The distance d measures the differentiation between i and j. For any
fixed utility difference, increasing the differentiation d(i, j) drives choice proba-
bilities closer to 1/2, capturing the fact that more differentiated objects are less
substitutable and harder to compare. The ratio [u(i)− u(j)]/d(i, j) can be inter-
preted as the strength of preference for option i over option j, while the function
F maps strength of preference to choice probabilities.

Many models proposed in the discrete choice literature to address empirical
phenomena related to the comparability and the substitutability between different
options turn out to be a MUM. While these models may appear to take very
different forms, they all represent the differentiation between the options with a
distance metric, which influences binary comparisons through a special case of
formula (1). The following examples are perhaps the most familiar.

EXAMPLE 2: The covariance probit model (Thurstone, 1927) is a MUM. The
model is described by a joint Gaussian vector (X1, . . . , Xn), each coordinate Xi

corresponding to an option i ∈ Z, such that ρ(i, j) = P{Xi > Xj}. Note that

ρ(i, j) = P

{
Xi −Xj − E[Xi −Xj ]√

Var(Xi −Xj)
>

E[Xi −Xj ]√
Var(Xi −Xj)

}
= Φ

(
E[Xi −Xj ]√
Var(Xi −Xj)

)

which is a special case of the MUM formula (1) with utility u(i) = E[Xi], dis-
tance metric d(i, j) =

√
Var(Xi −Xj) (we allow correlation but rule out perfectly

correlated variables), and F = Φ the standard Gaussian cdf.

EXAMPLE 3: The nested logit model (McFadden, 1978) is a MUM. The set
of alternatives is partitioned into K disjoints nests B1 ∪ · · · ∪ BK = Z. The
utility of each option i is a random variable U(i) = u(i) + εi where u(i) ∈ R is

11



the deterministic part of utility, and the random taste shocks εi have the joint
cumulative distribution

G(ε1, . . . , εn) = exp

−
K∑
k=1

∑
j∈Bk

exp (−εj/λk)

λk


with parameters λ1, . . . , λK ∈ (0, 1]. To see that nested logit is a MUM, note the
probability that option i is preferred to option j is

ρ(i, j) = P{U(i) > U(j)} =

[
1 + exp

(
u(j)− u(i)

d(i, j)

)]−1

where d(i, j) = λk whenever i and j belong to nest Bk, and d(i, j) = 1 when i
and j belong to different nests. Writing the nested logit as a MUM allows for a
simpler interpretation of the λk parameters: they measure the distance between
alternatives within nest k.

EXAMPLE 4: The elimination-by-aspects model (Restle, 1961; Tversky, 1972a,b)
is a MUM. The model assumes that each option i has a set of aspects A(i). There
is a measure m defined over the set of aspects such that

ρ(i, j) =
m [A(i)]−m [A(j)]

m [A(i) \A(j)] +m [A(j) \A(i)]
.

This formula is a special case of MUM where utility u(i) = m[A(i)] is the measure
of the set of option i’s aspects, distance d(i, j) = m [A(i) \A(j)] +m [A(j) \A(i)]
is the measure of the set of aspects that do not overlap between the i and j, and
with F (x) = 1/2 + x/2.

Other special cases of MUM abound in the literature, including the ideal point
model of Coombs, Greenberg and Zinnes (1961), the consumer address models
of Hotelling (1929) and Salop (1979), the random coefficients model of Hausman
and Wise (1978), the incremental EU advantage model of Fishburn (1978), the
Bayesian learning model of Natenzon (2019), and the weighted linear model of
Chambers et al. (2023).

Restricting the d parameter in the MUM to the discrete metric with d(i, j) = 1
for all i 6= j and d(i, i) = 0 for all i, we obtain a special subclass of MUM with
no role for differentiation, called Fechnerian utility models. With this restriction,
Example 2 becomes the ‘standard’ probit, and Example 3 becomes the classic
logit model (Luce, 1959; McFadden, 1974). We discuss this restricted class of
models in detail in Section III.

Models in the MUM class take advantage of the differentiation metric d to
address several empirical phenomena related to the substitutability and the com-
parability of choice options. Our main characterization result, below, implies the
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MUM can fit the all the choice data in Example 1 and Figures 1–3.

THEOREM 1: A choice rule ρ is a MUM if and only if it satisfies moderate
transitivity.

PROOF:
Halff (1976) proposed the MUM formula, and showed the first step we need to

prove the necessity part of Theorem 1:

LEMMA 3 (Halff, 1976): If ρ is a MUM and min{ρ(i, j), ρ(j, k)} ≥ 1/2, then
ρ(i, k) ≥ min{ρ(i, j), ρ(j, k)}.

PROOF:
Suppose that ρ(i, j) ≥ 1/2 and ρ(j, k) ≥ 1/2 but, contrary to the claim, ρ(i, k) <

min{ρ(i, j), ρ(j, k)}. By the MUM representation, u(i) ≥ u(j) ≥ u(k). Then, the
representation and the triangle inequality property of d imply the contradiction

u(i)− u(k) < d(i, k) min

{
u(i)− u(j)

d(i, j)
,
u(j)− u(k)

d(j, k)

}
≤ [d(i, j) + d(j, k)] min

{
u(i)− u(j)

d(i, j)
,
u(j)− u(k)

d(j, k)

}
≤ d(i, j)

u(i)− u(j)

d(i, j)
+ d(j, k)

u(j)− u(k)

d(j, k)

= u(i)− u(k).�

To complete the necessity part of the proof, suppose ρ(i, j) > ρ(j, k) = ρ(i, k) ≥
1/2. The MUM representation would require

u(i)− u(j)

d(i, j)
>
u(j)− u(k)

d(j, k)
=
u(i)− u(k)

d(i, k)
,

which, in turn, would imply a contradiction to the triangle inequality:

d(i, k) =
u(i)− u(j) + u(j)− u(k)

u(j)− u(k)
d(j, k) > d(i, j) + d(j, k)

and hence every MUM satisfies moderate transitivity.
To prove sufficiency, suppose ρ satisfies moderate transitivity. In particular, ρ

satisfies weak transitivity, and hence, by letting i < j if and only if ρ(i, j) ≥ 1/2,
we obtain a complete and transitive relation < on Z. This relation divides the n
alternatives in Z into n′ ≤ n indifference classes. Therefore, there exists a utility
function u : Z → {1, . . . , n′} that is onto and represents <, that is, u(i) ≥ u(j) if
and only if i < j if and only if ρ(i, j) ≥ 1/2.

Let Y := {{i, j} ⊂ Z : ρ(i, j) 6= 1/2}, and let m be the cardinality of the set
{|ρ(i, j) − 1/2| : {i, j} ∈ Y }. Partition the set Y into m disjoint sets Y1 ∪ Y2 ∪
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· · · ∪Ym = Y such that for any two pairs {i, j} and {k, `} in Y we have {i, j} ∈ Ys
and {k, `} ∈ Yt with s ≥ t if and only if |ρ(i, j)− 1/2| ≤ |ρ(k, `)− 1/2|. Thus, the
pairs in Y1 have the highest value of |ρ(i, j)−1/2|, while the pairs in Ym have the
lowest value of |ρ(i, j)− 1/2|.

The result is trivial when Z has n ≤ 2 alternatives so suppose n ≥ 3. Define a
constant C = (n− 1)[n(n−1)/2+1] > 0 and define the sequence D1, D2, . . . , Dm by:

D1 = 0;Dt = (n− 1)t−2 for t = 2, . . . ,m.

Let d : Z × Z → [0,∞) be defined as follows:

(2) d(i, j) =

 0, if i = j
C, if i 6= j and ρ(i, j) = 1/2
(C/2 +Dt) |u(i)− u(j)| , if {i, j} ∈ Yt

From (2) it is immediate that d satisfies (i) d(i, j) ≥ 0; (ii) d(i, j) = 0 if and
only if i = j; and (iii) d(i, j) = d(j, i) for all i, j ∈ Z. To show d is a metric, it
remains to verify the triangle inequality: d(i, k) ≤ d(i, j)+d(j, k). The inequality
trivially holds when any two options among i, j, k are equal. Consider three
distinct options i, j, k ∈ Z.

Case 1: u(i) = u(j) = u(k). By the definition of u we have ρ(i, j) = ρ(j, k) =
ρ(i, k) = 1/2. By the definition of d we have d(i, k) = C < 2C = d(i, j) +
d(j, k).

Case 2: u(i) 6= u(j) = u(k). The definitions of u and d imply

d(i, j) + d(j, k)− d(i, k) = (C/2 +Ds) |u(i)− u(j)|+ C − (C/2 +Dt) |u(i)− u(k)|
= (Ds −Dt) |u(i)− u(k)|+ C

≥ −(n− 1)m−2(n− 1) + C

= (n− 1)[n(n−1)/2+1] − (n− 1)m−1

> 0

where the last inequality follows from the fact that m ≤ n(n− 1)/2.

Case 3: u(j) 6= u(i) = u(k). The definitions of u and d imply

d(i, j) + d(j, k)− d(i, k) = (C/2 +Ds) |u(i)− u(j)|+ (C/2 +Dt) |u(j)− u(k)| − C
= (C +Ds +Dt) |u(j)− u(k)| − C
≥ 0.

Case 4: u(k) 6= u(i) = u(j). Same argument as Case 2.

Case 5: u(i) > u(j) > u(k). By the definition of u we have {i, j} ∈ Yr, {j, k} ∈
14



Ys, and {i, k} ∈ Yt, for some r, s, t. The definition of d implies

d(i, j) + d(j, k)− d(i, k) = (C/2 +Dr) |u(i)− u(j)|+ (C/2 +Ds) |u(j)− u(k)|
− (C/2 +Dt) |u(i)− u(j) + u(j)− u(k)|

= (Dr −Dt) |u(i)− u(j)|+ (Ds −Dt) |u(j)− u(k)|

The definition of u implies ρ(i, j) > 1/2 and ρ(j, k) > 1/2. By mod-
erate transitivity we have either ρ(i, j) = ρ(j, k) = ρ(i, k) or ρ(i, k) >
min{ρ(i, j), ρ(j, k)}. The first case implies Dr = Ds = Dt and therefore
d(i, j) + d(j, k) − d(i, k) = 0. The second case implies Dt < max{Dr, Ds}.
If Dt ≤ min{Dr, Ds} then both (Dr −Dt) and (Ds −Dt) are positive and
the desired inequality holds. It remains to show the inequality holds when
min{Dr, Ds} < Dt < max{Dr, Ds}, which implies

d(i, j) + d(j, k)− d(i, k) ≥ (max{Dr, Ds} −Dt) 1 + (min{Dr, Ds} −Dt) (n− 2)

≥ (n− 1)t−1 − (n− 1)t−2 + [0− (n− 1)t−2](n− 2)

= 0.

Case 6: u(i) > u(k) > u(j). By the definition of u we have {i, j} ∈ Yr, {j, k} ∈
Ys, and {i, k} ∈ Yt, for some r, s, t. The definition of d implies

d(i, j) + d(j, k)− d(i, k) = (C/2 +Dr) [u(i)− u(k) + u(k)− u(j)]

+ (C/2 +Ds) [u(k)− u(j)]− (C/2 +Dt) [u(i)− u(k)]

= (Dr −Dt) [u(i)− u(k)] + (C +Dr +Ds) [u(k)− u(j)]

≥
(
0− (n− 1)m−2

)
(n− 2) + (C + 0 + 0) 1

= −(n− 1)m−1 + (n− 1)m−2 + (n− 1)n(n−1)/2+1

> 0.

Case 7: u(j) > u(i) > u(k). Analogous to Case 6.

Case 8: u(j) > u(k) > u(i). Analogous to Case 6.

Case 9: u(k) > u(i) > u(j). Analogous to Case 6.

Case 10: u(k) > u(j) > u(i). Since d(i, j) + d(j, k) ≤ d(i, k) if and only if
d(j, i) + d(k, j) ≤ d(k, i), the inequality follows from Case 5.

By Cases 1 to 10 above, d satisfies the triangle inequality and is a metric. Now
we show u and d provide an ordinal representation for ρ,

(3) ρ(i, j) ≥ ρ(k, `) if and only if
u(i)− u(j)

d(i, j)
≥ u(k)− u(`)

d(k, `)
.
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First, ρ(i, j) ≥ ρ(k, `) > 1/2 if and only if ρ(i, j) > 1/2, ρ(k, `) > 1/2, and
|ρ(i, j) − 1/2| ≥ |ρ(k, `) − 1/2|; if and only if u(i) > u(j), u(k) > u(`), d(i, j) =
(C/2 +Ds)[u(i)− u(j)], d(k, `) = (C/2 +Dt)[u(k)− u(`)], and s ≤ t; if and only
if

u(i)− u(j)

d(i, j)
=

1

C/2 +Ds
≥ 1

C/2 +Dt
=
u(k)− u(`)

d(k, `)
> 0.

Second, 1/2 > ρ(i, j) ≥ ρ(k, `) if and only if ρ(`, k) ≥ ρ(j, i) > 1/2 and the desired
inequality follows from the step above. Finally, ρ(i, j) ≥ 1/2 ≥ ρ(k, `) if and only
if u(i)− u(j) ≥ 0 ≥ u(j)− u(k) if and only if

u(i)− u(j)

d(i, j)
≥ 0 ≥ u(k)− u(`)

d(k, `)

hence the ordinal representation (3) holds. Finding a strictly increasing F such
that the cardinal representation (1) holds is then straightforward and left to the
reader. �

It is easy to see that the parameters u, d, F in the MUM formula cannot be
pinned down uniquely from the binary choices over a finite set Z. In applications,
the analyst obtains identification by imposing additional parametric restrictions,
or by assuming a richer set of options with additional structure. Even in these
richer environments, affine transformations of utility and rescaling of the distance
metric are always permissible. Hence, normalizing the parameters (such as fixing
the utility of a choice object to zero and the utility of a different object to one)
is always required for identification. However, the next proposition shows that,
even with an abstract finite set of options, observed choices uniquely pin down
some ordinal information about u and d:

PROPOSITION 2: Let ρ be a MUM with parameters u, d, and F . Then

(i) ρ(i, j) ≥ 1/2 if and only if u(i) ≥ u(j);

(ii) ρ(i, j) > ρ(i, k) > ρ(j, k) ≥ 1/2 implies d(i, j) < d(i, k).

PROOF:
From the MUM formula (1) it follows that ρ(i, j) > 1/2 if and only if [u(i) −

u(j)]/d(i, j) > 0 if and only if u(i) > u(j) proving (i). Suppose the assumption
in (ii) holds. Then, (i) implies u(j) ≥ u(k) hence u(i) − u(j) ≤ u(i) − u(k).
The MUM formula (1) implies [u(i) − u(j)]/d(i, j) > [u(i) − u(k)]/d(i, k), hence
d(i, k) > d(i, j). �

Item (i) in Proposition 2 shows choices in a MUM reveal a complete and tran-
sitive ranking over the options represented by the utility parameter u. Item
(ii) shows how every violation of strong transitivity is explained by the differ-
entiation parameter d. To illustrate, consider again the choice frequencies in
Example 1. By Proposition 2, any MUM that generates this data must satisfy
u(A′) > u(A) = u(B) and d(A′, A) < d(A′, B). This means that, in Savage’s

16



rendition of the example, the second bicycle is revealed to be closer to the first
bicycle than to the pony. And, in Tversky’s rendition, the second trip to Paris is
revealed to be closer to the first trip to Paris than to the trip to Rome.

Likewise, Proposition 2 implies that every MUM that generates the choices in
Figure 2 must satisfy u(1) > u(`) = u(h) > u(2), d(2, `) < d(2, h) and d(1, `) <
d(1, h). By the same token, Proposition 2 reveals that u(B) > u(A) > u(C)
and d(A,C) < d(B,C) in the example of Figure 3. It is worth noting that the
inequalities involving our abstract distance metric revealed by choice frequencies
agree with the inequalities an analyst would obtain by applying the standard
Euclidean distance, angle distance, or Manhattan distance to the vectors of mea-
surable attributes in Figures 2 and 3. That is, options that are revealed to be
‘close’ according to the subjective parameter d are in fact ‘close’ in the space of
observable attributes. The best way to map the utility and differentiation param-
eters to the observable attributes must be determined empirically in any given
application (see Hausman and Wise (1978) for a concrete example and Apesteguia
and Ballester (2018) for important issues the analyst must keep in mind when
building such a mapping).

III. Some Restrictions and a Generalization

The MUM characterized in Theorem 1 generalizes several nested binary choice
models in the literature, which we represent in order of generality in Figure 4.
The most restrictive model, at the very bottom in Figure 4, is the binary Logit
model in which choice probabilities are given by

(4) ρ(i, j) =
eu(i)

eu(i) + eu(j)
=

1

1 + e−[u(i)−u(j)]

for some utility function u : Z → R. Luce (1959) showed formula (4) is equivalent
to the product rule

ρ(i, j)ρ(j, k)ρ(k, i) = ρ(i, k)ρ(k, j)ρ(j, i)

which can be interpreted as saying that the probability of observing a choice cycle
in the direction i � j � k � i is always equal to the probability of observing a
choice cycle in the opposite direction. Luce (1959) obtains this equivalence under
the mild assumption of positivity, which requires that ρ(i, j) > 0 for all i, j.

Formula (4) is a special case of the Fechnerian utility model from psychophysics
(Fechner, 1859; Debreu, 1958; Davidson and Marschak, 1959) where

(5) ρ(i, j) = F (u(i)− u(j))

for some utility function u : Z → R and a strictly increasing F : R → (0, 1).
Fudenberg, Iijima and Strzalecki (2015) show that, assuming positivity, (5) is
equivalent to acyclicity. This postulate, expressed here in an equivalent formula-
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Observable Properties Models

Weak
Transitivity

Weak
Utility

Moderate
Transitivity

Moderate
Utility

Strong
Transitivity

(and Positivity)
Simple

Scalability

Acyclicity
(and Positivity)

Fechnerian
Utility

Product Rule
(and Positivity) Logit

Proposition 3

Theorem 1

Tversky and Russo (1969)

Fudenberg et al. (2015)

Luce (1959)

Figure 4. Summary of implications between models and postulates.

Note: Relationship between models and postulates on choice probabilities for binary stochastic choice
over a finite set of options. A double arrow (↔) indicates equivalence while an arrow ( 7→) indicates
implication in the direction of the arrow and failure of implication in the opposite direction.
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tion by Scott (1964), rules out cycles of the form ρ(xi, yi) ≥ ρ(xf(i), yg(i)) for all
i = 1, . . . , n with at least one strict inequality, for permutations f, g : {1, . . . , n} →
{1, . . . , n}.

Formula (5) is a special case of simple scalability (Krantz, 1964) which requires

(6) ρ(i, j) = F (u(i), u(j))

for some utility function u and a real valued function F which is strictly increasing
in the first argument and strictly decreasing in the second. Tversky and Russo
(1969) showed that simple scalability is equivalent to strong transitivity.

A quick comparison of the formulas shows that (4)⇒ (5)⇒ (6). To see that (6)
is a special case MUM, note that strong transitivity implies moderate transitivity,
and the result follows from Theorem 1. The failure of the reverse implications is
easily seen by examples.

Above, we imposed restrictions on the parameters of the MUM to obtain several
special cases in the literature. Conversely, we now relax the triangle inequality
property in the distance metric of the MUM to obtain a more general model, and
we show this model is equivalent to the weak transitivity postulate.

A semimetric on Z is a function s : Z2 → R+ satisfying s(i, j) = 0 if and only
if i = j, and s(i, j) = s(j, i) for all i, j. A semimetric does not need to satisfy
the triangle inequality. A choice rule ρ on a finite set Z is a weak utility model
(WUM) if there is a utility function u : Z → R, a semimetric s : Z2 → R+ and a
strictly increasing function F , such that for all i 6= j,

(WUM) ρ(i, j) = F

(
u(i)− u(j)

s(i, j)

)
where F satisfies F (x) = 1 − F (−x) for all x. An analog to Proposition 2 holds
true for the parameters of the WUM (the argument is similar and we leave the
proof to the reader). Next, we characterize the WUM:

PROPOSITION 3: A choice rule ρ is a WUM if and only if it satisfies weak
transitivity.

PROOF:

Necessity is straightforward. To show sufficiency, suppose the choice rule ρ on
a finite set Z satisfies weak transitivity. As in the proof of Theorem 1, weak
transitivity implies there is a utility function u : Z → {1, . . . ,m} representing the
complete and transitive binary relation given by i < j if and only if ρ(i, j) ≥ 1/2.
Fix k, ` with ρ (k, `) = maxi,j∈Z ρ(i, j). Define s (k, `) = 1 and F : [u(`) −
u(k), u(k)− u(`)]→ R by

F (x) =
1

2
+ x

(
ρ(k, `)− 1/2

u(k)− u(`)

)
.
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Finally, for each i, j ∈ Z define

s(i, j) =
u(i)− u(j)

F−1 (ρ(i, j))
.

and it is easy to verify that u, s, F represent ρ. �
Proposition 3 appears at the top of Figure 4. While obtaining a weakly tran-

sitive representation is not unprecedented (Luce and Suppes, 1965), this result
allows us to cleanly see the role of the triangle inequality property. Combining
Theorem 1 and Proposition 3, we conclude that the triangle inequality property
of the distance metric in the MUM is exactly responsible for the restriction from
weakly transitive to moderately transitive choice behavior. Conversely, special-
izing the distance metric in the MUM to the trivial discrete metric is equivalent
to going from moderately transitive behavior to acyclic behavior. For a more
comprehensive view, the reader may compare our Figure 4 to Figure 5 in Luce
and Suppes (1965) and Figure 1 in Fishburn (1973).

IV. Relation to Random Utility Models

A choice rule ρ on a finite Z is a random utility model (RUM) if there exists
a probability measure µ over the strict orderings on Z such that ρ(i, j) equals
the probability under µ of the event in which i beats j. Block and Marschak
(1959) and Falmagne (1978) characterize the set of RUMs in an abstract setting
of choice options when choice data for all finite menus is available. A review of
the literature that tackles the characterization of binary choice RUMs is provided
by Fishburn (1992). The MUM and RUM families have a non-empty intersection
which includes Examples 2–4 above. Next, we show that neither MUM nor RUM
nest each other.

EXAMPLE 5: We modify an example given in de Souza (1983) to obtain a
choice rule that is a MUM but not a RUM. Let the choice rule ρ on Z =
{1, 2, 3, 4, 5, 6} be given by

ρ(4, 5) = ρ(4, 6) = ρ(2, 5) = ρ(2, 3) = ρ(1, 6) = ρ(1, 3) = 1

ρ(2, 6) = ρ(1, 5) =
1

2
+ ε

ρ(2, 4) = ρ(1, 4) = ρ(3, 5) = ρ(3, 6) =
1

2
+
ε

2

ρ(3, 4) = ρ(1, 2) = ρ(5, 6) =
1

2
+
ε

3

where 0 < ε < 3/10. It is straightforward to verify that ρ is moderately transitive,
and therefore a MUM by Theorem 1. Now suppose ρ is a RUM generated by the
probability µ on the set of strict orderings over Z. Since ρ(2, 3) = ρ(4, 6) = 1, for
any strict ordering in the support of µ in which 3 � 4 we also have 2 � 3 � 4 � 6
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and therefore 2 � 6. This shows µ assigns zero probability to the intersection of
events 3 � 4 and 6 � 2. By the same reasoning, µ assigns zero probability to the
intersection of events 3 � 4 and 5 � 1, and to the intersection of events 6 � 2 and
5 � 1. Since µ is a probability measure, this requires ρ(3, 4)+ρ(5, 1)+ρ(6, 2) ≤ 1.
But instead we have ρ(3, 4) + ρ(5, 1) + ρ(6, 2) = 3/2 − 5ε/3 > 1 and therefore ρ
cannot be a RUM.

A converse example based on the well-known Condorcet paradox shows that
RUM models can violate weak transitivity (and hence also moderate transitivity).
By Theorem 1 these RUM models are not MUMs. Let µ assign equal probability
to three strict orderings i � j � k, j � k � i and k � i � j over the options i,
j and k. The choice rule ρ generated by µ has ρ(i, j) = ρ(j, k) = ρ(k, i) = 2/3
which violates weak transitivity. Similarly, some recent models proposed in the
random choice literature including the random consideration set rule (Manzini
and Mariotti, 2014), the attribute rule (Gul, Natenzon and Pesendorfer, 2014),
the single-crossing random utility rule (Apesteguia, Ballester and Lu, 2017), the
deliberately stochastic choice rule (Cerreia-Vioglio et al., 2019) and the focus-
then-compare procedure (Ravid and Steverson, 2019) can be easily verified to
violate weak transitivity and, therefore, Theorem 1 implies their binary choice
restrictions are not nested by MUM.

Random utility maximization provides one natural extension of MUMs that are
RUMs (such as Examples 2–4) to choice from non-binary finite menus of options.
These extensions impose regularity : the probability of choosing an option can-
not increase when new options are introduced. Assuming regularity is reasonable
when modeling choices from a heterogeneous population of standard rational con-
sumers, but may not be a reasonable assumption in models of individual random
choice (Huber, Payne and Puto, 1982; Natenzon, 2019). We leave the problem
of studying general extensions of the MUM formula to multinomial choice, with
and without regularity, for future work.
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