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Motivation

Datasets with context-dependent choice behavior
» B chosen more than 50% of trials from {A, B};
» A chosen more than 50% of trials from {A, B, C}

Choice reversal seems incompatible with maximizing utility:
A= B? B> A?

Adding an error term to utility does not help:

Uar=up+ea
Ug=ug+tep
Uc=uc+ec

p(A,ABC) = P{UA > Ug and Uy > Uc} < ]P’{UA > UB} = p(A,AB)



common interpretation of such data: irrational behavior
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SEXUAL SELECTION
Irrationality in mate choice revealed
by tingara frogs

Amanda M. Lea' and Michael J. Ryan"*

Mate choice models derive from traditional microeconomic decision theory and assume
that individuals maximize their Darwinian fitness by making economically rational
decisions. Rational choices exhibit regularity, whereby the relative strength of preferences
between options remains stable when additional options are presented. We tested

female frogs with three simulated males who differed in relative call attractiveness and
call rate. In binary choice tests, females’ preferences favored stimulus caller B over caller
A; however, with the addition of an inferior “decoy” C, females reversed their preferences
and chose A over B. These results show that the relative valuation of mates is not
independent of inferior alternatives in the choice set and therefore cannot be explained
with the rational choice models currently used in sexual selection theory.

volutionary theory is tightly linked to tra- rational mate choices. The preference function
ditional decision theory, which predicts con- | concept, central to sexual selection theory (9),
sumer behavior by assuming individuals’ assumes that mate choice rules obey formal ra-

Aot nme il Tand +n rsrbrarmemec 4ot mmae | simmalite 70 A The wactidbe ~f e cnomd armmmded anl



Systematic context-dependent choice: evidence

Decoy effects found in people, but also:
Rhesus macaques (Parrish, Evans, Beran 2015)
Gray jays (Shafir, Waite, Smith 2002)
Honeybees (Shafir, Waite, Smith 2002)

Slime mold (Latty, Beekman 2010)



Testing choice theories using data

deterministic theory + noise model = random choice model

The most common noise models are random utility models:
Logit, Probit, Nested Logit, Mixed Logit, etc.

» Fluctuation in tastes
» Hand trembling mistakes
> Taste heterogeneity

Example: Hey and Orme (Econometrica, 1994)

Expected Utility
Disappointment Aversion Utility » + Gaussiane = Probit
Rank-dependent Utility



Contribution: a different noise model

Context-dependent data is incompatible with random utility:
deterministic theory + noise model = random choice model

One possible approach is to relax the deterministic theory:
Axiom 1: 77 is complete and transitive
Axiom 2: - .-

Instead, we introduce a more realistic noise model:
= better fit and out-of-sample prediction
= able to identify underlying preferences

= makes standard welfare analysis possible again

Maybe tingara frogs are rational after all...



Choice data: frog mating selection

Physalaemus pustulosus
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Choice data: frog mating selection
‘!\)‘/‘=x Menu A B C
{A B} [ 37 63 —
A
B PN {B,C}| — .69 .31
g (decoy) ‘ {A, C} 84 - 16
Se B {A,B,C}|.55 .28 .17
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Source: Lea and Ryan (2015), supplemental materials online.



Our new explanation for context-dependent choice

v

Limited Sampling = mistakes

v

Two lessons from experimental psychophysics:

» Mistakes and Values
» Mistakes and Similarity

v

Bayesian updating: favors options that are easier to compare

v

Parametric Model: Bayesian probit

t Limited Sampling
it Preference
o Similarity

v

Better data fit and better out-of-sample prediction

v

Makes welfare analysis possible again



Limited Sampling: frog mating choice

Experimental data from Lea and Ryan (2015)

"4
Female tingara frogs choose a mate based on its call.

Where does the noise in the data come from?

Decision maker obtains imperfect information about the value of
the alternatives before making a choice:

» Choices made in dynamic social environments

» Potential mates have complex traits

» Limited cognitive resources

» Limited perceptual systems

» Time is costly: predator risk, lost mating opportunities



Two lessons from cognitive choice tasks

Examples of cognitive choice tasks:

» Which triangle is larger?

v

Which star has more points?
Which building is taller?
Which object is heavier?
Which sound is louder?

v

v

v

Special feature: analyst knows the utility function.

— Easy to identify and analyze rate of mistakes.

Two lessons about mistakes:
the effect of preference and the effect of similarity.



Lesson 1: The effect of preference

A is much better than B, while C is a little better than D.
Mistakes more likely in {C, D} than in {A, B}.

dimension 2

dimension 1



Lesson 2: The effect of similarity

Tverksy and Russo (1969):

“it has been hypothesized that for a fixed difference
between the psychological scale values, the more similar
the stimuli, the easier the comparison or the
discrimination between them.”



Lesson 2: The effect of similarity

Ais better than B, C, D, E.
Mistakes more likely in {A, B} than in {A, E}.

dimension 2

dimension 1



Similarity example: triangle areas

Which object in this pair has the largest area?




Similarity example: triangle areas

Which object in this pair has the largest area? And now?




Similarity example: star points

Which star has more points?



Similarity example: star points

Which star has more points?

DA



Similarity example: star points

Which star has more points?

DA



Similarity example: star points

Which star has more points? And now?

DA



Summary: lessons from experimental psychophysics

Comparing two options A and B:

Lesson 1: A, B easier to compare the greater the distance in value.
Mistakes more likely when V4 — Vi is small.

Lesson 2: Keeping values V4 and Vg fixed,
A, B easier to compare when they are more similar.
Mistakes more likely when A and B are very different.



Easy to compare + Bayesian updating

Take a random draw of three frogs from the same population:

B A A B C C
A B C C B A
C C B A A B



Easy to compare + Bayesian updating

Take a random draw of three frogs from the same population:

B A A B C C
A B C C B A
C C B A A B

If the only reliable comparison shows that

(A= Q) (C > A)
B A A or B C C
A B C C B A
c ¢ B A A B

then alternative B starts at a disadvantage.



Parametric model: Bayesian Probit (Natenzon, 2010)

A, B, C choice alternatives

1A, 148, e utility values
Prior p; distributed iid A(m,s)

Signals X; = u; + ¢; for each available i = A, B, C
easeg,ec ~ N(0,X) joint normal
> E[&,‘] =0
» ojj € [0, 1] correlation of ¢j,¢;
» Var[e;] = 1/p > 0 equal precision for all i

Choice Alternative j that maximizes X; (Thurstone, 1927)



Parametric model: Bayesian Probit (Natenzon, 2010)

A, B, C choice alternatives

1A, 148, e utility values
Prior p; distributed iid A(m,s)

Signals X; = u; + ¢; for each available i = A, B, C
easeg,ec ~ N(0,X) joint normal
> E[&,‘] =0
» ojj € [0, 1] correlation of ¢j,¢;
» Var[e;] = 1/p > 0 equal precision for all i

Choice /XWeyhative,/J/ et /iakimiads/ 5] NMUvsYone//19271Y

Alternative j that maximizes E[u;|(X;)icB]



Identification
Prior iid N'(m,s)

Signals joint N ( , %Z)

N\

Proposition

The Bayesian probit with parameters (m, S, fi, p, ¥)

is observationally equivalent to

the Bayesian probit with parameters (0,1, u, p,X), where

el

(fij —m)  and P= /s

Mi =

Sl
nm

Choice probabilities:
(i, B) = P{E[1|X] > E[ux| X], Vk € B}

where

E[ulX] = [/ + (1/p)Z] ' X



Behavioral content of parameters p, i1, o

Proposition

Ph (i (0.J) = @ (\“g“%’ff;)

where ® s the standard normal cdf

Empirical content of each parameter (Natenzon, 2010):
p information precision
1 revealed preference

o revealed similarity

Axiom (Moderate Stochastic Transitivity)
p(i.J) > 1/2 and plj, k) > 1/2 = p(i, K) > min{p(i,), pUj, K)}.



Effect of correlation o
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Closer look at the binary data

y=Xx
A Menu ‘ n ‘ A B C
é (degoy) ‘\5‘::9"‘) {A,B} | 118¢ | .37 .63 —
o {B,C}| 909 | — .69 .31
\-‘(\w,ﬁpeﬁmﬂ {A,C}| 909 | .84 — .16
DIM-2 >
» B> A C rational benchmark
» More mistakes in B, C than in A, C
= A, C revealed more similar oac > opc
» Bayesian updating = introducing C hurts B



Goodness-of-fit: Bayesian probit versus RUM

data BP RUM
Menu| A B C|A B C|A B C
{A B} |37 63 — |37 63 — |48 52 —
{(B,C}| - 69 31| - 69 31| — .69 .31
{AC}| 8 — 16|84 — .16|.8 — .17
{A,B,C}| 55 .28 .17|.57 26 .17|.48 .35 .17
{AB,g} |61 39 — |60 .40 — |.48 52 —

Log Likelihood: -265.2 (BP) and -271.0 (RUM).
— BP is at least €588 ~ 360 times more likely to generate

dataset than any RUM.

Akaike information criterion (AlC):
BP >~ RUM - Logit >~ Probit



Out-of-sample prediction

Estimate each model on restricted dataset:

data
Menu | A B C
{A,B} | .37 63 —
{B,C}| — .69 .31
{A,C}| .84 — .16
{A,B,C} | .55 .28 .17

And predict choices for excluded menu {A, B, ¢}.

Model | A B (
data | .61 .39 -—
BP|.61 .39 -—
RUM | 42 58 —
Probit | .46 .54 —
Logit | .49 51 -—




Discussion: are frogs irrational?

Estimated BP parameters:

g = 1.959 (97.5%), oag = 0.154, t = 0.075

fia = 0.454 (67.5%), oac = 0.952

pc = —0.566(28.6%),  opc = 0.000
Py=x Menu| A B C
{ABY|[37T 63 —
NS {B,C}| — 69 .31
§ (decoy) ‘\\ {A, C} 84 - 16
. e {A,B,C}| 55 28 .17
‘\\(S\ompetitor) {A, B, Q} 61 39 -

>
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Discussion: Bayesian updating, Monty Hall, evolution

Imagine frogs playing the Monty Hall game:
» Frogs that never switch doors win the prize 1/3 of the time

» Frogs that always switch doors win the prize 2/3 of the time

Any heuristic that behaves as if doing Bayesian updating could
have an evolutionary advantage
= Possible evolutionary explanation for decoy effects




Conclusion

» Phenomenon: context-dependent choice behavior

> Limited Sampling = mistakes

» Two lessons from psychophysics:

» Mistakes and Value
» Mistakes and Similarity

» Bayesian updating: favors options that are easier to compare

» Parametric Model: Bayesian probit

t Limited Sampling
1t Preference
o Similarity

> Better fit and out of sample prediction
Allows standard welfare analysis



Thank you!



Louis Leon Thurstone (1887-1955)




‘Law’ of Comparative Judgement (Thurstone, 1927)

The ‘law’ is a model of binary comparisons:

Alternatives ordered in a psychological continuum

» gradations of gray, weight, excellence

The discriminal process for each alternative X; = u; + ¢;
g; discriminal deviation ~ N(0,1/t)

1/t discriminal dispersion

p(1,{1,2}) = P{X1 > Xa}



Comparison: Bayesian probit versus RUM

Multinomial Probit, Logit, Nested Logit, Cross-nested Logit, Mixed
Logit are random utility models (RUMs).

Lemma (Block Marschak 1960)

Every RUM is equivalent to a probability measure over the n! strict
rankings of alternatives.

Let

pasc =P{A> B>~ C}
pacs = P{A > C = B}
peac =P{B > A > C}
peca =P{B > C - A}
pcag =P{C ~ A~ B}
1 — paBc — pacs — pPBaCc — Peca — pcag = P{C = B ~ A}



