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Maybe túngara frogs are rational after all.

Paulo Natenzon
Washington University in Saint Louis

Representation of Value and Economic Choice Workshop
Columbia University — May 6th, 2016



Motivation

Datasets with context-dependent choice behavior

I B chosen more than 50% of trials from {A,B};
I A chosen more than 50% of trials from {A,B,C}

Choice reversal seems incompatible with maximizing utility:
A � B? B � A?

Adding an error term to utility does not help:

UA = uA + εA

UB = uB + εB

UC = uC + εC

ρ(A,ABC ) = P{UA > UB and UA > UC} ≤ P{UA > UB} = ρ(A,AB)



A common interpretation of such data: irrational behavior

SEXUAL SELECTION

Irrationality in mate choice revealed
by túngara frogs
Amanda M. Lea1* and Michael J. Ryan1,2

Mate choice models derive from traditional microeconomic decision theory and assume
that individuals maximize their Darwinian fitness by making economically rational
decisions. Rational choices exhibit regularity, whereby the relative strength of preferences
between options remains stable when additional options are presented. We tested
female frogs with three simulated males who differed in relative call attractiveness and
call rate. In binary choice tests, females’ preferences favored stimulus caller B over caller
A; however, with the addition of an inferior “decoy” C, females reversed their preferences
and chose A over B. These results show that the relative valuation of mates is not
independent of inferior alternatives in the choice set and therefore cannot be explained
with the rational choice models currently used in sexual selection theory.

E
volutionary theory is tightly linked to tra-
ditional decision theory, which predicts con-
sumer behavior by assuming individuals’
decisions will lead to outcomes that max-
imize the chooser’s subjective utility, in terms

of satisfaction or benefit (1, 2). A rational individual
is one who makes choices that obey the simple
mathematical axioms of transitivity (if A > B and
B > C, then A > C) and regularity (if A > B in the
absence of C, then A > B in the presence of C). The
simple nature of rational models is intuitively at-
tractive; however, there has been much recent
debate as to how valuable they are in predicting
actual behavior (3–5). Human behavior commonly
deviates from what is predicted by rational choice
models, with individuals making seemingly sub-
optimal decisions regardless of outcome impor-
tance. One well-known violation of regularity is
the “decoy effect” (6–8). For example,while shopping
for a used vehicle, the buyer may value both low
price and fuel efficiency. Of the two vehicles con-
sidered, one has a higher price tag but also better
efficiency (A), whereas the second has a lower
price but also lower efficiency (B). The buyer de-
cides that he or she values lower prices over
higher efficiency and so chooses B. At this point,
the salesperson mentions that there is a third
vehicle (C), which also has good fuel efficiency
but a much higher price than both A and B. This
causes the buyer to reconsider, despite no inter-
est in the higher-priced vehicle. To the sales-
person’s delight, the buyer ultimately chooses A,
spending more money for better fuel efficiency.
This irrational behavior has been produced by
the decoy effect.
Mate choice is one of the most important de-

cisions an animal makes. In many species, these
critical decisions occur in dynamic social environ-
ments (such as leks) containingmultiple potential
mates with complex traits. Comparable to human
consumers maximizing utility, we expect animals
to maximize their Darwinian fitness by making

rational mate choices. The preference function
concept, central to sexual selection theory (9),
assumes that mate choice rules obey formal ra-
tionality (2, 7). The results of the scant empirical
studies that have tested this assumption were
either inconclusive (2) or failed to reject the
axioms of transitivity (10) and regularity (11).
Thus, we designed a study to address the axiom
of regularity using a decoy paradigm (6–8). We
hypothesized that females exhibit decoy effects
similar to those commonly observed in humans,

whereby the probability of choosing stimulus A
over B is dependent on the presence of the in-
ferior third option C [P(A|B) ≠ P(A|B,C)].
Mate choice behavior in our subject, the túngara

frog (Physalaemus pustulosus), has been thor-
oughly studied for three decades (12). Males form
lek-like aggregations and produce advertisement
calls to attract females. Females exhibit a highly
stereotyped and robust phonotactic response to
speakers broadcasting stimuli that mimic male
advertisement calls. Females generally prefer “stat-
ic” call characteristics such as low dominant fre-
quency and longer call durations, which are largely
replicable within individuals, in addition to fast-
er call rates, which change dynamically with the
social conditions. For the current study (13), po-
tential mates were represented by three acoustic
stimuli (A, B, C) varying in two traits under se-
lection by females: (i) static attractiveness [dimen-
sion 1 (DIM-1)] and (ii) call rate (DIM-2). The
subjective values of each of these independent
traits were determined by the actual measured
preferences of 78 females from the same popula-
tion in preliminary choice trials, which were com-
pleted before beginning our decoy experiments
(Fig. 1, A and B; fig. S1; and tables S1 and S2). To
represent variation in static attractiveness, we
chose three natural male call variants from a
previous study that demonstrated the range of
multidimensional acoustic variation present in
our study population (13, 14). Static attractive-
ness and call rate were inversely combined to
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Fig. 1. Independent valuation of call traits. (A) Static attractiveness (DIM-1) is a composite trait of acoustic
characters inherent to a given natural call variant (B1, A1, C1). (B) Calls were presented at three different call
rates (DIM-2): C2 = 1/4, A2 = 1/2, B2 = 1/1 (in calls per second). Females’ relative preferences for the three
variants of each trait weremeasured in preliminary phonotaxis trials: (At, Bt), (Bt, Ct), (At, Ct).The trait value is
theproportionof females’choicesout of the total possible. Each stimulusvariant (e.g., At)waspresented in two
of the three pairwise tests; thus the sum of proportions for the three stimuli was 1.50, whereas the maximum
possible for a given stimulus is 1.0. Error bars indicate TSEof the binomial distribution. (C andD) Differences in
DIM-2 are discriminated more by females than differences in DIM-1, leading to an asymmetric relation
among final stimuli (A, B, C) in total value, as calculated by the sum of binomial z ratios for each trait.
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Systematic context-dependent choice: evidence

Decoy effects found in people, but also:
Rhesus macaques (Parrish, Evans, Beran 2015)
Gray jays (Shafir, Waite, Smith 2002)
Honeybees (Shafir, Waite, Smith 2002)
Slime mold (Latty, Beekman 2010)



Testing choice theories using data

deterministic theory + noise model = random choice model

The most common noise models are random utility models:
Logit, Probit, Nested Logit, Mixed Logit, etc.

I Fluctuation in tastes

I Hand trembling mistakes

I Taste heterogeneity

Example: Hey and Orme (Econometrica, 1994)

Expected Utility
Disappointment Aversion Utility

Rank-dependent Utility

+ Gaussian ε = Probit



Contribution: a different noise model

Context-dependent data is incompatible with random utility:

deterministic theory + noise model = random choice model

One possible approach is to relax the deterministic theory:
Axiom 1: % is complete and transitive
Axiom 2: · · ·

Instead, we introduce a more realistic noise model:

⇒ better fit and out-of-sample prediction

⇒ able to identify underlying preferences

⇒ makes standard welfare analysis possible again

Maybe túngara frogs are rational after all...



Choice data: frog mating selection

Physalaemus pustulosus



Choice data: frog mating selection

Menu A B C
{A,B} .37 .63 −
{B ,C} − .69 .31
{A,C} .84 − .16

{A,B ,C} .55 .28 .17
{A,B , 6C} .61 .39 −

Source: Lea and Ryan (2015), supplemental materials online.



Our new explanation for context-dependent choice

I Limited Sampling ⇒ mistakes

I Two lessons from experimental psychophysics:
I Mistakes and Values
I Mistakes and Similarity

I Bayesian updating: favors options that are easier to compare

I Parametric Model: Bayesian probit

t Limited Sampling
µ Preference
σ Similarity

I Better data fit and better out-of-sample prediction

I Makes welfare analysis possible again



Limited Sampling: frog mating choice

Experimental data from Lea and Ryan (2015)

Female túngara frogs choose a mate based on its call.

Where does the noise in the data come from?

Decision maker obtains imperfect information about the value of
the alternatives before making a choice:

I Choices made in dynamic social environments

I Potential mates have complex traits

I Limited cognitive resources

I Limited perceptual systems

I Time is costly: predator risk, lost mating opportunities



Two lessons from cognitive choice tasks

Examples of cognitive choice tasks:

I Which triangle is larger?

I Which star has more points?

I Which building is taller?

I Which object is heavier?

I Which sound is louder?

Special feature: analyst knows the utility function.

=⇒ Easy to identify and analyze rate of mistakes.

Two lessons about mistakes:
the effect of preference and the effect of similarity.



Lesson 1: The effect of preference

A is much better than B, while C is a little better than D.

Mistakes more likely in {C ,D} than in {A,B}.
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Lesson 2: The effect of similarity

Tverksy and Russo (1969):

“it has been hypothesized that for a fixed difference
between the psychological scale values, the more similar
the stimuli, the easier the comparison or the
discrimination between them.”



Lesson 2: The effect of similarity

A is better than B,C ,D,E .

Mistakes more likely in {A,B} than in {A,E}.
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Similarity example: triangle areas

Which object in this pair has the largest area?

i j



Similarity example: triangle areas

Which object in this pair has the largest area? And now?

i’ j



Similarity example: star points

Which star has more points?



Similarity example: star points

Which star has more points?



Similarity example: star points

Which star has more points?



Similarity example: star points

Which star has more points? And now?



Summary: lessons from experimental psychophysics

Comparing two options A and B:

Lesson 1: A,B easier to compare the greater the distance in value.
Mistakes more likely when VA − VB is small.

Lesson 2: Keeping values VA and VB fixed,
A,B easier to compare when they are more similar.
Mistakes more likely when A and B are very different.



Easy to compare + Bayesian updating

Take a random draw of three frogs from the same population:

B A A B C C
A B C C B A
C C B A A B

If the only reliable comparison shows that

(A � C )

B A A
A B C
C C B

or

(C � A)

B C C
C B A
A A B

then alternative B starts at a disadvantage.



Easy to compare + Bayesian updating
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A B C C B A
C C B A A B
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A B C
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then alternative B starts at a disadvantage.



Parametric model: Bayesian Probit (Natenzon, 2010)

A,B,C choice alternatives

µA, µB , µC utility values

Prior µi distributed iid N (m, s)

Signals Xi = µi + εi for each available i = A,B,C

εA, εB , εC ∼ N (0,Σ) joint normal

I E[εi ] = 0
I σij ∈ [0, 1] correlation of εi , εj
I Var[εi ] = 1/p > 0 equal precision for all i

Choice Alternative j that maximizes Xj (Thurstone, 1927)

Choice Alternative j that maximizes E[µj |(Xi )i∈B ]



Parametric model: Bayesian Probit (Natenzon, 2010)

A,B,C choice alternatives

µA, µB , µC utility values

Prior µi distributed iid N (m, s)

Signals Xi = µi + εi for each available i = A,B,C

εA, εB , εC ∼ N (0,Σ) joint normal

I E[εi ] = 0
I σij ∈ [0, 1] correlation of εi , εj
I Var[εi ] = 1/p > 0 equal precision for all i

Choice /////////////Alternative//j//////that/////////////maximizes////Xj///////////////(Thurstone,////////1927)

Choice Alternative j that maximizes E[µj |(Xi )i∈B ]



Identification

Prior iid N (m, s)

Signals joint N
(
µ, 1pΣ

)
Proposition

The Bayesian probit with parameters (m̃, s̃, µ̃, p̃,Σ)
is observationally equivalent to
the Bayesian probit with parameters (0, 1, µ, p,Σ), where

µi =
1√
s̃

(µ̃i − m̃) and p =
p̃

(1/s)
.

Choice probabilities:

ρµσp (j ,B) = P {E[µj |X ] ≥ E[µk |X ],∀k ∈ B}

where
E[µ|X ] = [I + (1/p)Σ]−1 X



Behavioral content of parameters p, µ, σ

Proposition

ρµσp (i , {i , j}) = Φ

(√
p
√

2

(µi − µj)√
1− σij

)
where Φ is the standard normal cdf

Empirical content of each parameter (Natenzon, 2010):

p information precision

µ revealed preference

σ revealed similarity

Axiom (Moderate Stochastic Transitivity)

ρ(i , j) > 1/2 and ρ(j , k) > 1/2 ⇒ ρ(i , k) > min{ρ(i , j), ρ(j , k)}.



Effect of correlation σ

Xi = µi + εi
Xj = µj + εj

}
=⇒ Xi − Xj = µi − µj + (εi − εj)

ρµσp (i , {i , j}) = Φ

(√
p
√

2

(µi − µj)√
1− σij

)

I σ matters when
√
p (µi − µj) is small
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Closer look at the binary data

Menu n A B C
{A,B} 118♀ .37 .63 −
{B ,C} 90♀ − .69 .31
{A,C} 90♀ .84 − .16

I B � A � C rational benchmark

I More mistakes in B,C than in A,C

⇒ A,C revealed more similar σAC > σBC

I Bayesian updating ⇒ introducing C hurts B



Goodness-of-fit: Bayesian probit versus RUM

data BP RUM
Menu A B C A B C A B C

{A,B} .37 .63 − .37 .63 − .48 .52 −
{B,C} − .69 .31 − .69 .31 − .69 .31
{A,C} .84 − .16 .84 − .16 .83 − .17

{A,B,C} .55 .28 .17 .57 .26 .17 .48 .35 .17
{A,B, 6C} .61 .39 − .60 .40 − .48 .52 −

Log Likelihood: -265.2 (BP) and -271.0 (RUM).

=⇒ BP is at least e5.886 ' 360 times more likely to generate
dataset than any RUM.

Akaike information criterion (AIC):
BP � RUM � Logit � Probit



Out-of-sample prediction
Estimate each model on restricted dataset:

data
Menu A B C

{A,B} .37 .63 −
{B,C} − .69 .31
{A,C} .84 − .16

{A,B,C} .55 .28 .17

And predict choices for excluded menu {A,B, 6C}.

Model A B 6C
data .61 .39 −

BP .61 .39 −
RUM .42 .58 −

Probit .46 .54 −
Logit .49 .51 −



Discussion: are frogs irrational?

Estimated BP parameters:

µB = 1.959 (97.5%), σAB = 0.154, t = 0.075

µA = 0.454 (67.5%), σAC = 0.952

µC = −0.566 (28.6%), σBC = 0.000

Menu A B C
{A,B} .37 .63 −
{B ,C} − .69 .31
{A,C} .84 − .16

{A,B ,C} .55 .28 .17
{A,B , 6C} .61 .39 −



Discussion: Bayesian updating, Monty Hall, evolution

Imagine frogs playing the Monty Hall game:

I Frogs that never switch doors win the prize 1/3 of the time

I Frogs that always switch doors win the prize 2/3 of the time

Any heuristic that behaves as if doing Bayesian updating could
have an evolutionary advantage
=⇒ Possible evolutionary explanation for decoy effects



Conclusion

I Phenomenon: context-dependent choice behavior

I Limited Sampling ⇒ mistakes

I Two lessons from psychophysics:
I Mistakes and Value
I Mistakes and Similarity

I Bayesian updating: favors options that are easier to compare

I Parametric Model: Bayesian probit

t Limited Sampling
µ Preference
σ Similarity

I Better fit and out of sample prediction
Allows standard welfare analysis



Thank you!



Louis Leon Thurstone (1887–1955)



‘Law’ of Comparative Judgement (Thurstone, 1927)

The ‘law’ is a model of binary comparisons:

Alternatives ordered in a psychological continuum

I gradations of gray, weight, excellence

The discriminal process for each alternative Xi = µi + εi

εi discriminal deviation ∼ N (0, 1/t)

1/t discriminal dispersion

ρ(1, {1, 2}) = P{X1 > X2}



Comparison: Bayesian probit versus RUM
Multinomial Probit, Logit, Nested Logit, Cross-nested Logit, Mixed
Logit are random utility models (RUMs).

Lemma (Block Marschak 1960)

Every RUM is equivalent to a probability measure over the n! strict
rankings of alternatives.

Let

pABC = P{A � B � C}
pACB = P{A � C � B}
pBAC = P{B � A � C}
pBCA = P{B � C � A}
pCAB = P{C � A � B}

1− pABC − pACB − pBAC − pBCA − pCAB = P{C � B � A}


